--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-finetuned-domains results: [] --- # roberta-finetuned-domains This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5388 - F1: 0.2879 - Roc Auc: 0.5757 - Accuracy: 0.2533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3789 | 0.97 | 31 | 0.4545 | 0.0004 | 0.4997 | 0.0002 | | 0.2729 | 1.97 | 63 | 0.4684 | 0.2193 | 0.5479 | 0.1668 | | 0.1905 | 2.98 | 95 | 0.5180 | 0.2491 | 0.5566 | 0.2100 | | 0.1568 | 3.98 | 127 | 0.5263 | 0.2633 | 0.5636 | 0.2236 | | 0.1398 | 4.98 | 159 | 0.5298 | 0.2862 | 0.5751 | 0.2492 | | 0.131 | 5.83 | 186 | 0.5388 | 0.2879 | 0.5757 | 0.2533 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3