|
--- |
|
base_model: mixedbread-ai/mxbai-embed-large-v1 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3550 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: At the end of 2023, Alphabet Inc. reported total debts amounting |
|
to $14.2 billion, compared to $10.9 billion at the end of 2022. |
|
sentences: |
|
- What was the total debt of Alphabet Inc. as of the end of 2023? |
|
- What was ExxonMobil's contribution to the energy production in the Energy sector |
|
during 2020? |
|
- Describe Amazon's revenue growth in 2023? |
|
- source_sentence: In 2022, Pfizer strategically managed cash flow from investments |
|
by utilizing operating cash flow, issuing new debt, and through the monetization |
|
of certain non-core assets. This approach of diversifying the source of funding |
|
for investments was done to minimize risk and uncertainty in economic conditions. |
|
sentences: |
|
- How much capital expenditure did AUX Energy invest in renewable energy projects |
|
in 2022? |
|
- What effect did the 2023 market downturn have on Amazon's retail and cloud segments? |
|
- How did Pfizer manage cash flows from investments in 2022? |
|
- source_sentence: The primary revenue generators for JPMorgan Chase for the fiscal |
|
year 2023 were the Corporate & Investment Bank (CIB) and the Asset & Wealth Management |
|
(AWM) sectors. The CIB sector benefited from a rise in merger and acquisition |
|
activities, while AWM saw large net inflows. |
|
sentences: |
|
- What is General Electric's strategic priority for its Aviation business segment? |
|
- Which sectors contributed the most to the revenue of JPMorgan Chase for FY 2023? |
|
- What is the principal activity of Apple Inc.? |
|
- source_sentence: For the fiscal year 2023, Microsoft's Intelligent Cloud segment |
|
generated revenues of $58 billion, demonstrating solid growth fueled by strong |
|
demand for cloud services and server products. |
|
sentences: |
|
- What is the primary strategy of McDonald’s to drive growth in the future? |
|
- What impact did the increase in gold prices have on Newmont Corporation's revenue |
|
in 2023? |
|
- What was the revenue generated by Microsoft's Intelligent Cloud segment for fiscal |
|
year 2023? |
|
- source_sentence: Microsoft, in their latest press release, revealed that they are |
|
anticipating a revenue growth of approximately 12% for the fiscal year ending |
|
in 2024. |
|
sentences: |
|
- What is Microsoft's projected revenue growth for fiscal year 2024? |
|
- What is the fair value of equity method investments of Microsoft in the fiscal |
|
year 2025? |
|
- What was the impact of COVID-19 on Zoom's profits? |
|
model-index: |
|
- name: mxbai-embed-large-v1-financial-rag-matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 1024 |
|
type: dim_1024 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9392405063291139 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9670886075949368 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.31308016877637135 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19341772151898737 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0989873417721519 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9392405063291139 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9670886075949368 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9212281141643793 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.898873819570022 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8993853803492357 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9392405063291139 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9670886075949368 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3130801687763713 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1934177215189873 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0989873417721519 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9392405063291139 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9670886075949368 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9217284365901642 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8994826200522402 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8999494134557425 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9367088607594937 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9645569620253165 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.31223628691983124 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19291139240506328 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0989873417721519 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9367088607594937 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9645569620253165 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9186273598847787 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8954631303998389 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8958871142668611 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9392405063291139 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9645569620253165 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3130801687763713 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19291139240506328 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0989873417721519 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8455696202531645 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9392405063291139 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9645569620253165 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9898734177215189 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9201161947922436 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8975597749648381 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8979721416614026 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9417721518987342 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9645569620253165 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9848101265822785 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3139240506329114 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19291139240506328 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09848101265822784 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9417721518987342 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9645569620253165 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9848101265822785 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9170562815583235 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8948693992364878 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8957325656059834 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9316455696202531 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9569620253164557 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9822784810126582 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3105485232067511 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19139240506329114 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09822784810126582 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8405063291139241 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9316455696202531 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9569620253164557 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9822784810126582 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9153318022971121 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8934589109905566 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8943102728098851 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# mxbai-embed-large-v1-financial-rag-matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co./mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co./mixedbread-ai/mxbai-embed-large-v1) <!-- at revision 990580e27d329c7408b3741ecff85876e128e203 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Microsoft, in their latest press release, revealed that they are anticipating a revenue growth of approximately 12% for the fiscal year ending in 2024.', |
|
"What is Microsoft's projected revenue growth for fiscal year 2024?", |
|
"What was the impact of COVID-19 on Zoom's profits?", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_1024` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8456 | |
|
| cosine_accuracy@3 | 0.9392 | |
|
| cosine_accuracy@5 | 0.9671 | |
|
| cosine_accuracy@10 | 0.9899 | |
|
| cosine_precision@1 | 0.8456 | |
|
| cosine_precision@3 | 0.3131 | |
|
| cosine_precision@5 | 0.1934 | |
|
| cosine_precision@10 | 0.099 | |
|
| cosine_recall@1 | 0.8456 | |
|
| cosine_recall@3 | 0.9392 | |
|
| cosine_recall@5 | 0.9671 | |
|
| cosine_recall@10 | 0.9899 | |
|
| cosine_ndcg@10 | 0.9212 | |
|
| cosine_mrr@10 | 0.8989 | |
|
| **cosine_map@100** | **0.8994** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8456 | |
|
| cosine_accuracy@3 | 0.9392 | |
|
| cosine_accuracy@5 | 0.9671 | |
|
| cosine_accuracy@10 | 0.9899 | |
|
| cosine_precision@1 | 0.8456 | |
|
| cosine_precision@3 | 0.3131 | |
|
| cosine_precision@5 | 0.1934 | |
|
| cosine_precision@10 | 0.099 | |
|
| cosine_recall@1 | 0.8456 | |
|
| cosine_recall@3 | 0.9392 | |
|
| cosine_recall@5 | 0.9671 | |
|
| cosine_recall@10 | 0.9899 | |
|
| cosine_ndcg@10 | 0.9217 | |
|
| cosine_mrr@10 | 0.8995 | |
|
| **cosine_map@100** | **0.8999** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8405 | |
|
| cosine_accuracy@3 | 0.9367 | |
|
| cosine_accuracy@5 | 0.9646 | |
|
| cosine_accuracy@10 | 0.9899 | |
|
| cosine_precision@1 | 0.8405 | |
|
| cosine_precision@3 | 0.3122 | |
|
| cosine_precision@5 | 0.1929 | |
|
| cosine_precision@10 | 0.099 | |
|
| cosine_recall@1 | 0.8405 | |
|
| cosine_recall@3 | 0.9367 | |
|
| cosine_recall@5 | 0.9646 | |
|
| cosine_recall@10 | 0.9899 | |
|
| cosine_ndcg@10 | 0.9186 | |
|
| cosine_mrr@10 | 0.8955 | |
|
| **cosine_map@100** | **0.8959** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.8456 | |
|
| cosine_accuracy@3 | 0.9392 | |
|
| cosine_accuracy@5 | 0.9646 | |
|
| cosine_accuracy@10 | 0.9899 | |
|
| cosine_precision@1 | 0.8456 | |
|
| cosine_precision@3 | 0.3131 | |
|
| cosine_precision@5 | 0.1929 | |
|
| cosine_precision@10 | 0.099 | |
|
| cosine_recall@1 | 0.8456 | |
|
| cosine_recall@3 | 0.9392 | |
|
| cosine_recall@5 | 0.9646 | |
|
| cosine_recall@10 | 0.9899 | |
|
| cosine_ndcg@10 | 0.9201 | |
|
| cosine_mrr@10 | 0.8976 | |
|
| **cosine_map@100** | **0.898** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8405 | |
|
| cosine_accuracy@3 | 0.9418 | |
|
| cosine_accuracy@5 | 0.9646 | |
|
| cosine_accuracy@10 | 0.9848 | |
|
| cosine_precision@1 | 0.8405 | |
|
| cosine_precision@3 | 0.3139 | |
|
| cosine_precision@5 | 0.1929 | |
|
| cosine_precision@10 | 0.0985 | |
|
| cosine_recall@1 | 0.8405 | |
|
| cosine_recall@3 | 0.9418 | |
|
| cosine_recall@5 | 0.9646 | |
|
| cosine_recall@10 | 0.9848 | |
|
| cosine_ndcg@10 | 0.9171 | |
|
| cosine_mrr@10 | 0.8949 | |
|
| **cosine_map@100** | **0.8957** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8405 | |
|
| cosine_accuracy@3 | 0.9316 | |
|
| cosine_accuracy@5 | 0.957 | |
|
| cosine_accuracy@10 | 0.9823 | |
|
| cosine_precision@1 | 0.8405 | |
|
| cosine_precision@3 | 0.3105 | |
|
| cosine_precision@5 | 0.1914 | |
|
| cosine_precision@10 | 0.0982 | |
|
| cosine_recall@1 | 0.8405 | |
|
| cosine_recall@3 | 0.9316 | |
|
| cosine_recall@5 | 0.957 | |
|
| cosine_recall@10 | 0.9823 | |
|
| cosine_ndcg@10 | 0.9153 | |
|
| cosine_mrr@10 | 0.8935 | |
|
| **cosine_map@100** | **0.8943** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 3,550 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 17 tokens</li><li>mean: 44.69 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 18.26 tokens</li><li>max: 30 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------| |
|
| <code>The total revenue for Google as of 2021 stands at approximately $181 billion, primarily driven by the performance of its advertising and cloud segments, hailing from the Information Technology sector.</code> | <code>What is the total revenue of Google as of 2021?</code> | |
|
| <code>In Q4 2021, Amazon.com Inc. reported a significant increase in net income, reaching $14.3 billion, due to the surge in online shopping during the pandemic.</code> | <code>What was the Net Income of Amazon.com Inc. in Q4 2021?</code> | |
|
| <code>Coca-Cola reported full-year 2021 revenue of $37.3 billion, a rise of 13% compared to $33.0 billion in 2020. This was primarily due to strong volume growth as well as improved pricing and mix.</code> | <code>How did Coca-Cola's revenue performance in 2021 measure against its previous year?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
1024, |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 10 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.8649 | 6 | - | 0.8783 | 0.8651 | 0.8713 | 0.8783 | 0.8439 | 0.8809 | |
|
| 1.4414 | 10 | 0.7682 | - | - | - | - | - | - | |
|
| 1.8739 | 13 | - | 0.8918 | 0.8827 | 0.8875 | 0.8918 | 0.8729 | 0.8933 | |
|
| 2.8829 | 20 | 0.1465 | 0.8948 | 0.8896 | 0.8928 | 0.8961 | 0.8884 | 0.8953 | |
|
| 3.8919 | 27 | - | 0.8930 | 0.8884 | 0.8917 | 0.8959 | 0.8900 | 0.8945 | |
|
| 4.3243 | 30 | 0.0646 | - | - | - | - | - | - | |
|
| 4.9009 | 34 | - | 0.8972 | 0.8883 | 0.8947 | 0.8955 | 0.8925 | 0.8970 | |
|
| 5.7658 | 40 | 0.0397 | - | - | - | - | - | - | |
|
| 5.9099 | 41 | - | 0.8964 | 0.8915 | 0.8953 | 0.8943 | 0.8926 | 0.8979 | |
|
| 6.9189 | 48 | - | 0.8994 | 0.8930 | 0.8966 | 0.8955 | 0.8932 | 0.8974 | |
|
| 7.2072 | 50 | 0.0319 | - | - | - | - | - | - | |
|
| 7.9279 | 55 | - | 0.8998 | 0.8945 | 0.8967 | 0.8961 | 0.8943 | 0.8999 | |
|
| **8.6486** | **60** | **0.0296** | **0.8994** | **0.8957** | **0.898** | **0.8959** | **0.8943** | **0.8999** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.6 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |