metadata
base_model: mixedbread-ai/mxbai-embed-large-v1
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3550
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
At the end of 2023, Alphabet Inc. reported total debts amounting to $14.2
billion, compared to $10.9 billion at the end of 2022.
sentences:
- What was the total debt of Alphabet Inc. as of the end of 2023?
- >-
What was ExxonMobil's contribution to the energy production in the
Energy sector during 2020?
- Describe Amazon's revenue growth in 2023?
- source_sentence: >-
In 2022, Pfizer strategically managed cash flow from investments by
utilizing operating cash flow, issuing new debt, and through the
monetization of certain non-core assets. This approach of diversifying the
source of funding for investments was done to minimize risk and
uncertainty in economic conditions.
sentences:
- >-
How much capital expenditure did AUX Energy invest in renewable energy
projects in 2022?
- >-
What effect did the 2023 market downturn have on Amazon's retail and
cloud segments?
- How did Pfizer manage cash flows from investments in 2022?
- source_sentence: >-
The primary revenue generators for JPMorgan Chase for the fiscal year 2023
were the Corporate & Investment Bank (CIB) and the Asset & Wealth
Management (AWM) sectors. The CIB sector benefited from a rise in merger
and acquisition activities, while AWM saw large net inflows.
sentences:
- >-
What is General Electric's strategic priority for its Aviation business
segment?
- >-
Which sectors contributed the most to the revenue of JPMorgan Chase for
FY 2023?
- What is the principal activity of Apple Inc.?
- source_sentence: >-
For the fiscal year 2023, Microsoft's Intelligent Cloud segment generated
revenues of $58 billion, demonstrating solid growth fueled by strong
demand for cloud services and server products.
sentences:
- >-
What is the primary strategy of McDonald’s to drive growth in the
future?
- >-
What impact did the increase in gold prices have on Newmont
Corporation's revenue in 2023?
- >-
What was the revenue generated by Microsoft's Intelligent Cloud segment
for fiscal year 2023?
- source_sentence: >-
Microsoft, in their latest press release, revealed that they are
anticipating a revenue growth of approximately 12% for the fiscal year
ending in 2024.
sentences:
- What is Microsoft's projected revenue growth for fiscal year 2024?
- >-
What is the fair value of equity method investments of Microsoft in the
fiscal year 2025?
- What was the impact of COVID-19 on Zoom's profits?
model-index:
- name: mxbai-embed-large-v1-financial-rag-matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.8455696202531645
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9392405063291139
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9670886075949368
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9898734177215189
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8455696202531645
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31308016877637135
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19341772151898737
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0989873417721519
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8455696202531645
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9392405063291139
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9670886075949368
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9898734177215189
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9212281141643793
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.898873819570022
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8993853803492357
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8455696202531645
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9392405063291139
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9670886075949368
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9898734177215189
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8455696202531645
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3130801687763713
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1934177215189873
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0989873417721519
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8455696202531645
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9392405063291139
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9670886075949368
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9898734177215189
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9217284365901642
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8994826200522402
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8999494134557425
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8405063291139241
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9367088607594937
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9645569620253165
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9898734177215189
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8405063291139241
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31223628691983124
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19291139240506328
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0989873417721519
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8405063291139241
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9367088607594937
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9645569620253165
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9898734177215189
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9186273598847787
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8954631303998389
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8958871142668611
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8455696202531645
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9392405063291139
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9645569620253165
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9898734177215189
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8455696202531645
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3130801687763713
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19291139240506328
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0989873417721519
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8455696202531645
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9392405063291139
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9645569620253165
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9898734177215189
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9201161947922436
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8975597749648381
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8979721416614026
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8405063291139241
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9417721518987342
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9645569620253165
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9848101265822785
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8405063291139241
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3139240506329114
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19291139240506328
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09848101265822784
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8405063291139241
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9417721518987342
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9645569620253165
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9848101265822785
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9170562815583235
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8948693992364878
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8957325656059834
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.8405063291139241
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9316455696202531
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9569620253164557
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9822784810126582
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8405063291139241
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3105485232067511
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19139240506329114
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09822784810126582
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8405063291139241
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9316455696202531
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9569620253164557
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9822784810126582
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9153318022971121
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8934589109905566
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8943102728098851
name: Cosine Map@100
mxbai-embed-large-v1-financial-rag-matryoshka
This is a sentence-transformers model finetuned from mixedbread-ai/mxbai-embed-large-v1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
sentences = [
'Microsoft, in their latest press release, revealed that they are anticipating a revenue growth of approximately 12% for the fiscal year ending in 2024.',
"What is Microsoft's projected revenue growth for fiscal year 2024?",
"What was the impact of COVID-19 on Zoom's profits?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8456 |
cosine_accuracy@3 |
0.9392 |
cosine_accuracy@5 |
0.9671 |
cosine_accuracy@10 |
0.9899 |
cosine_precision@1 |
0.8456 |
cosine_precision@3 |
0.3131 |
cosine_precision@5 |
0.1934 |
cosine_precision@10 |
0.099 |
cosine_recall@1 |
0.8456 |
cosine_recall@3 |
0.9392 |
cosine_recall@5 |
0.9671 |
cosine_recall@10 |
0.9899 |
cosine_ndcg@10 |
0.9212 |
cosine_mrr@10 |
0.8989 |
cosine_map@100 |
0.8994 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8456 |
cosine_accuracy@3 |
0.9392 |
cosine_accuracy@5 |
0.9671 |
cosine_accuracy@10 |
0.9899 |
cosine_precision@1 |
0.8456 |
cosine_precision@3 |
0.3131 |
cosine_precision@5 |
0.1934 |
cosine_precision@10 |
0.099 |
cosine_recall@1 |
0.8456 |
cosine_recall@3 |
0.9392 |
cosine_recall@5 |
0.9671 |
cosine_recall@10 |
0.9899 |
cosine_ndcg@10 |
0.9217 |
cosine_mrr@10 |
0.8995 |
cosine_map@100 |
0.8999 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8405 |
cosine_accuracy@3 |
0.9367 |
cosine_accuracy@5 |
0.9646 |
cosine_accuracy@10 |
0.9899 |
cosine_precision@1 |
0.8405 |
cosine_precision@3 |
0.3122 |
cosine_precision@5 |
0.1929 |
cosine_precision@10 |
0.099 |
cosine_recall@1 |
0.8405 |
cosine_recall@3 |
0.9367 |
cosine_recall@5 |
0.9646 |
cosine_recall@10 |
0.9899 |
cosine_ndcg@10 |
0.9186 |
cosine_mrr@10 |
0.8955 |
cosine_map@100 |
0.8959 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8456 |
cosine_accuracy@3 |
0.9392 |
cosine_accuracy@5 |
0.9646 |
cosine_accuracy@10 |
0.9899 |
cosine_precision@1 |
0.8456 |
cosine_precision@3 |
0.3131 |
cosine_precision@5 |
0.1929 |
cosine_precision@10 |
0.099 |
cosine_recall@1 |
0.8456 |
cosine_recall@3 |
0.9392 |
cosine_recall@5 |
0.9646 |
cosine_recall@10 |
0.9899 |
cosine_ndcg@10 |
0.9201 |
cosine_mrr@10 |
0.8976 |
cosine_map@100 |
0.898 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8405 |
cosine_accuracy@3 |
0.9418 |
cosine_accuracy@5 |
0.9646 |
cosine_accuracy@10 |
0.9848 |
cosine_precision@1 |
0.8405 |
cosine_precision@3 |
0.3139 |
cosine_precision@5 |
0.1929 |
cosine_precision@10 |
0.0985 |
cosine_recall@1 |
0.8405 |
cosine_recall@3 |
0.9418 |
cosine_recall@5 |
0.9646 |
cosine_recall@10 |
0.9848 |
cosine_ndcg@10 |
0.9171 |
cosine_mrr@10 |
0.8949 |
cosine_map@100 |
0.8957 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8405 |
cosine_accuracy@3 |
0.9316 |
cosine_accuracy@5 |
0.957 |
cosine_accuracy@10 |
0.9823 |
cosine_precision@1 |
0.8405 |
cosine_precision@3 |
0.3105 |
cosine_precision@5 |
0.1914 |
cosine_precision@10 |
0.0982 |
cosine_recall@1 |
0.8405 |
cosine_recall@3 |
0.9316 |
cosine_recall@5 |
0.957 |
cosine_recall@10 |
0.9823 |
cosine_ndcg@10 |
0.9153 |
cosine_mrr@10 |
0.8935 |
cosine_map@100 |
0.8943 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,550 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 17 tokens
- mean: 44.69 tokens
- max: 105 tokens
|
- min: 10 tokens
- mean: 18.26 tokens
- max: 30 tokens
|
- Samples:
positive |
anchor |
The total revenue for Google as of 2021 stands at approximately $181 billion, primarily driven by the performance of its advertising and cloud segments, hailing from the Information Technology sector. |
What is the total revenue of Google as of 2021? |
In Q4 2021, Amazon.com Inc. reported a significant increase in net income, reaching $14.3 billion, due to the surge in online shopping during the pandemic. |
What was the Net Income of Amazon.com Inc. in Q4 2021? |
Coca-Cola reported full-year 2021 revenue of $37.3 billion, a rise of 13% compared to $33.0 billion in 2020. This was primarily due to strong volume growth as well as improved pricing and mix. |
How did Coca-Cola's revenue performance in 2021 measure against its previous year? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8649 |
6 |
- |
0.8783 |
0.8651 |
0.8713 |
0.8783 |
0.8439 |
0.8809 |
1.4414 |
10 |
0.7682 |
- |
- |
- |
- |
- |
- |
1.8739 |
13 |
- |
0.8918 |
0.8827 |
0.8875 |
0.8918 |
0.8729 |
0.8933 |
2.8829 |
20 |
0.1465 |
0.8948 |
0.8896 |
0.8928 |
0.8961 |
0.8884 |
0.8953 |
3.8919 |
27 |
- |
0.8930 |
0.8884 |
0.8917 |
0.8959 |
0.8900 |
0.8945 |
4.3243 |
30 |
0.0646 |
- |
- |
- |
- |
- |
- |
4.9009 |
34 |
- |
0.8972 |
0.8883 |
0.8947 |
0.8955 |
0.8925 |
0.8970 |
5.7658 |
40 |
0.0397 |
- |
- |
- |
- |
- |
- |
5.9099 |
41 |
- |
0.8964 |
0.8915 |
0.8953 |
0.8943 |
0.8926 |
0.8979 |
6.9189 |
48 |
- |
0.8994 |
0.8930 |
0.8966 |
0.8955 |
0.8932 |
0.8974 |
7.2072 |
50 |
0.0319 |
- |
- |
- |
- |
- |
- |
7.9279 |
55 |
- |
0.8998 |
0.8945 |
0.8967 |
0.8961 |
0.8943 |
0.8999 |
8.6486 |
60 |
0.0296 |
0.8994 |
0.8957 |
0.898 |
0.8959 |
0.8943 |
0.8999 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}