base / README.md
raulgdp's picture
End of training
5c7840e verified
|
raw
history blame
2.37 kB
metadata
base_model: daveni/twitter-xlm-roberta-emotion-es
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: base
    results: []

base

This model is a fine-tuned version of daveni/twitter-xlm-roberta-emotion-es on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9425
  • Accuracy: 0.8465
  • F1: 0.8
  • Precision: 0.8667
  • Recall: 0.7429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6431 1.0 64 0.5474 0.7362 0.6171 0.7714 0.5143
0.4576 2.0 128 0.5103 0.7795 0.7358 0.7290 0.7429
0.2933 3.0 192 0.5647 0.8228 0.7619 0.8571 0.6857
0.198 4.0 256 0.6377 0.8346 0.7742 0.8889 0.6857
0.113 5.0 320 0.6867 0.8504 0.7935 0.9241 0.6952
0.057 6.0 384 0.8875 0.8189 0.7788 0.7864 0.7714
0.0282 7.0 448 0.9361 0.8346 0.7879 0.8387 0.7429
0.0234 8.0 512 1.0229 0.8228 0.7826 0.7941 0.7714
0.0095 9.0 576 0.9131 0.8622 0.8168 0.9070 0.7429
0.0101 10.0 640 0.9425 0.8465 0.8 0.8667 0.7429

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1