File size: 2,368 Bytes
e453ec7
5c7840e
e453ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7840e
e453ec7
5c7840e
 
 
 
 
e453ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7840e
 
 
 
 
 
 
 
 
 
e453ec7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: daveni/twitter-xlm-roberta-emotion-es
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# base

This model is a fine-tuned version of [daveni/twitter-xlm-roberta-emotion-es](https://huggingface.co./daveni/twitter-xlm-roberta-emotion-es) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9425
- Accuracy: 0.8465
- F1: 0.8
- Precision: 0.8667
- Recall: 0.7429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6431        | 1.0   | 64   | 0.5474          | 0.7362   | 0.6171 | 0.7714    | 0.5143 |
| 0.4576        | 2.0   | 128  | 0.5103          | 0.7795   | 0.7358 | 0.7290    | 0.7429 |
| 0.2933        | 3.0   | 192  | 0.5647          | 0.8228   | 0.7619 | 0.8571    | 0.6857 |
| 0.198         | 4.0   | 256  | 0.6377          | 0.8346   | 0.7742 | 0.8889    | 0.6857 |
| 0.113         | 5.0   | 320  | 0.6867          | 0.8504   | 0.7935 | 0.9241    | 0.6952 |
| 0.057         | 6.0   | 384  | 0.8875          | 0.8189   | 0.7788 | 0.7864    | 0.7714 |
| 0.0282        | 7.0   | 448  | 0.9361          | 0.8346   | 0.7879 | 0.8387    | 0.7429 |
| 0.0234        | 8.0   | 512  | 1.0229          | 0.8228   | 0.7826 | 0.7941    | 0.7714 |
| 0.0095        | 9.0   | 576  | 0.9131          | 0.8622   | 0.8168 | 0.9070    | 0.7429 |
| 0.0101        | 10.0  | 640  | 0.9425          | 0.8465   | 0.8    | 0.8667    | 0.7429 |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1