|
---
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:2382
|
|
- loss:MultipleNegativesRankingLoss
|
|
base_model: nomic-ai/nomic-embed-text-v1
|
|
widget:
|
|
- source_sentence: Collect the details that are associated with product '- Com espessura
|
|
constante de' '- 0,04 m', with quantity 1900, unit M2
|
|
sentences:
|
|
- 'Item Description: UNKNOWN PRODUCT, priced at 949.00 EUR, Origin: National'
|
|
- 'Product: UNKNOWN PRODUCT, Estimated Value: 514.00 EUR'
|
|
- "Details for 'MacBook Pro 14\" Processador M2/3 16GB/18GB RAM | SSD 512GB | Teclado\
|
|
\ Es-Es', with quantity 1, unit UN:\n - LOTE 31\n - Price: 656.00 EUR"
|
|
- source_sentence: Collect the details that are associated with Lot 14 product ''
|
|
'Monitor de Sinais Vitais ', with quantity 2, unit Subcontracting Unit
|
|
sentences:
|
|
- "Details for 'Monitor de Sinais Vitais ', with quantity 2, unit Subcontracting\
|
|
\ Unit:\n - LOTE 60\n - Price: 564.00 EUR"
|
|
- "Details for UNKNOWN PRODUCT:\n - LOTE 90\n - Price: 658.00 EUR"
|
|
- 'Item Description: UNKNOWN PRODUCT, priced at 90.00 EUR, Origin: National'
|
|
- source_sentence: Collect the details that are associated with product '' '2202000270
|
|
- FIO SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0 MULTIF AG. CILIND. 17 MM 1/2 C (UNID)',
|
|
with quantity 288, unit UN
|
|
sentences:
|
|
- 'Item Description: ''2202000270 - FIO SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0 MULTIF
|
|
AG. CILIND. 17 MM 1/2 C (UNID)'', with quantity 288, unit UN, priced at 66.00
|
|
EUR, Origin: National'
|
|
- 'Product: ''2202000285 - FIO SUT. POLIPROPI. NÃO ABS. 4/0 MONOF. AG. LANC. 16
|
|
MM 3/8 (UNID)'', with quantity 468, unit UN, Estimated Value: 619.00 EUR'
|
|
- 'Item Description: ''Carro transporte de roupa limpa/roupa suja'', with quantity
|
|
1, unit Subcontracting Unit, priced at 574.00 EUR, Origin: National'
|
|
- source_sentence: Collect the details that are associated with product '' '2202000006
|
|
- FIO SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA (CART.)', with quantity 72, unit
|
|
UN
|
|
sentences:
|
|
- 'Item Description: ''2202000309 - FIO SUT. ABS. MÉDIO PRAZO 2/0 MONOF. BARBADO,
|
|
C/ AG. CILIND. 30MM 1/2C, 23CM (CART.)'', with quantity 24, unit UN, priced at
|
|
206.00 EUR, Origin: National'
|
|
- "Details for '2202000006 - FIO SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA (CART.)',\
|
|
\ with quantity 72, unit UN:\n - LOTE 82\n - Price: 854.00 EUR"
|
|
- 'LOTE 10
|
|
|
|
Description: ''Mesas apoio (anestesia e circulante)'', with quantity 4, unit Subcontracting
|
|
Unit
|
|
|
|
Price: 117.00 EUR'
|
|
- source_sentence: Collect the details that are associated with product '' '2202000251
|
|
- FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity
|
|
144, unit UN
|
|
sentences:
|
|
- "Details for UNKNOWN PRODUCT:\n - LOTE 34\n - Price: 477.00 EUR"
|
|
- "Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C\
|
|
\ 90CM (CART.)', with quantity 144, unit UN:\n - LOTE 73\n - Price: 644.00 EUR"
|
|
- 'Item Description: ''Mesas de Mayo'', with quantity 2, unit Subcontracting Unit,
|
|
priced at 651.00 EUR, Origin: National'
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
model-index:
|
|
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: Unknown
|
|
type: unknown
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: .nan
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: .nan
|
|
name: Spearman Cosine
|
|
---
|
|
|
|
# SentenceTransformer based on nomic-ai/nomic-embed-text-v1
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1](https://huggingface.co./nomic-ai/nomic-embed-text-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [nomic-ai/nomic-embed-text-v1](https://huggingface.co./nomic-ai/nomic-embed-text-v1) <!-- at revision 720244025c1a7e15661a174c63cce63c8218e52b -->
|
|
- **Maximum Sequence Length:** 8192 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("ptpedroVortal/nomic_vortal_v3.4")
|
|
# Run inference
|
|
sentences = [
|
|
"Collect the details that are associated with product '' '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN",
|
|
"Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN:\n - LOTE 73\n - Price: 644.00 EUR",
|
|
"Item Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit, priced at 651.00 EUR, Origin: National",
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
|
|
* Evaluated with <code>__main__.CustomEvaluator</code>
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:--------|
|
|
| pearson_cosine | nan |
|
|
| **spearman_cosine** | **nan** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 2,382 training samples
|
|
* Columns: <code>query</code>, <code>correct_node</code>, and <code>score</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | query | correct_node | score |
|
|
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 15 tokens</li><li>mean: 56.3 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 49.65 tokens</li><li>max: 1729 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
|
* Samples:
|
|
| query | correct_node | score |
|
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
|
| <code>Collect the details that are associated with product '' '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN</code> | <code>LOTE 98<br>Description: '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN<br>Price: 940.00 EUR</code> | <code>1</code> |
|
|
| <code>Collect the details that are associated with product '' '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN</code> | <code>Product: '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN, Estimated Value: 696.00 EUR</code> | <code>1</code> |
|
|
| <code>Collect the details that are associated with Lot 4 product '' 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit</code> | <code>LOTE 44<br>Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit<br>Price: 542.00 EUR</code> | <code>1</code> |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "cos_sim"
|
|
}
|
|
```
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 297 evaluation samples
|
|
* Columns: <code>query</code>, <code>correct_node</code>, and <code>score</code>
|
|
* Approximate statistics based on the first 297 samples:
|
|
| | query | correct_node | score |
|
|
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 15 tokens</li><li>mean: 55.37 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 46.58 tokens</li><li>max: 435 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
|
* Samples:
|
|
| query | correct_node | score |
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
|
| <code>Collect the details that are associated with Lot 7 product '' 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit</code> | <code>Item Description: 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit, priced at 628.00 EUR, Origin: National</code> | <code>1</code> |
|
|
| <code>Collect the details that are associated with Lot 10 product '' 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit</code> | <code>Details for 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit:<br> - LOTE 83<br> - Price: 940.00 EUR</code> | <code>1</code> |
|
|
| <code>Collect the details that are associated with Lot 1 product '' 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND</code> | <code>Product: 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND, Estimated Value: 714.00 EUR</code> | <code>1</code> |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "cos_sim"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `num_train_epochs`: 10
|
|
- `warmup_ratio`: 0.1
|
|
- `bf16`: True
|
|
- `load_best_model_at_end`: True
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 10
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: True
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: True
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
|
|
|:----------:|:-------:|:-------------:|:---------------:|:---------------:|
|
|
| 0.6711 | 100 | 0.6485 | 0.4410 | nan |
|
|
| 1.3356 | 200 | 0.5026 | 0.4399 | nan |
|
|
| **2.0067** | **300** | **0.491** | **0.4175** | **nan** |
|
|
| 2.6711 | 400 | 0.442 | 0.4409 | nan |
|
|
| 3.3356 | 500 | 0.3999 | 0.4421 | nan |
|
|
| 4.0067 | 600 | 0.367 | 0.6182 | nan |
|
|
| 4.6711 | 700 | 0.3743 | 0.6104 | nan |
|
|
| 5.3356 | 800 | 0.1972 | 0.6115 | nan |
|
|
|
|
* The bold row denotes the saved checkpoint.
|
|
|
|
### Framework Versions
|
|
- Python: 3.10.14
|
|
- Sentence Transformers: 3.3.1
|
|
- Transformers: 4.47.0.dev0
|
|
- PyTorch: 2.5.1+cu121
|
|
- Accelerate: 1.1.1
|
|
- Datasets: 3.1.0
|
|
- Tokenizers: 0.20.4
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### MultipleNegativesRankingLoss
|
|
```bibtex
|
|
@misc{henderson2017efficient,
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
|
year={2017},
|
|
eprint={1705.00652},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |