ptpedroVortal commited on
Commit
05a8e5c
·
verified ·
1 Parent(s): 86d1910

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2382
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: nomic-ai/nomic-embed-text-v1
10
+ widget:
11
+ - source_sentence: Collect the details that are associated with product '- Com espessura
12
+ constante de' '- 0,04 m', with quantity 1900, unit M2
13
+ sentences:
14
+ - 'Item Description: UNKNOWN PRODUCT, priced at 949.00 EUR, Origin: National'
15
+ - 'Product: UNKNOWN PRODUCT, Estimated Value: 514.00 EUR'
16
+ - "Details for 'MacBook Pro 14\" Processador M2/3 16GB/18GB RAM | SSD 512GB | Teclado\
17
+ \ Es-Es', with quantity 1, unit UN:\n - LOTE 31\n - Price: 656.00 EUR"
18
+ - source_sentence: Collect the details that are associated with Lot 14 product ''
19
+ 'Monitor de Sinais Vitais ', with quantity 2, unit Subcontracting Unit
20
+ sentences:
21
+ - "Details for 'Monitor de Sinais Vitais ', with quantity 2, unit Subcontracting\
22
+ \ Unit:\n - LOTE 60\n - Price: 564.00 EUR"
23
+ - "Details for UNKNOWN PRODUCT:\n - LOTE 90\n - Price: 658.00 EUR"
24
+ - 'Item Description: UNKNOWN PRODUCT, priced at 90.00 EUR, Origin: National'
25
+ - source_sentence: Collect the details that are associated with product '' '2202000270
26
+ - FIO SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0 MULTIF AG. CILIND. 17 MM 1/2 C (UNID)',
27
+ with quantity 288, unit UN
28
+ sentences:
29
+ - 'Item Description: ''2202000270 - FIO SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0 MULTIF
30
+ AG. CILIND. 17 MM 1/2 C (UNID)'', with quantity 288, unit UN, priced at 66.00
31
+ EUR, Origin: National'
32
+ - 'Product: ''2202000285 - FIO SUT. POLIPROPI. NÃO ABS. 4/0 MONOF. AG. LANC. 16
33
+ MM 3/8 (UNID)'', with quantity 468, unit UN, Estimated Value: 619.00 EUR'
34
+ - 'Item Description: ''Carro transporte de roupa limpa/roupa suja'', with quantity
35
+ 1, unit Subcontracting Unit, priced at 574.00 EUR, Origin: National'
36
+ - source_sentence: Collect the details that are associated with product '' '2202000006
37
+ - FIO SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA (CART.)', with quantity 72, unit
38
+ UN
39
+ sentences:
40
+ - 'Item Description: ''2202000309 - FIO SUT. ABS. MÉDIO PRAZO 2/0 MONOF. BARBADO,
41
+ C/ AG. CILIND. 30MM 1/2C, 23CM (CART.)'', with quantity 24, unit UN, priced at
42
+ 206.00 EUR, Origin: National'
43
+ - "Details for '2202000006 - FIO SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA (CART.)',\
44
+ \ with quantity 72, unit UN:\n - LOTE 82\n - Price: 854.00 EUR"
45
+ - 'LOTE 10
46
+
47
+ Description: ''Mesas apoio (anestesia e circulante)'', with quantity 4, unit Subcontracting
48
+ Unit
49
+
50
+ Price: 117.00 EUR'
51
+ - source_sentence: Collect the details that are associated with product '' '2202000251
52
+ - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity
53
+ 144, unit UN
54
+ sentences:
55
+ - "Details for UNKNOWN PRODUCT:\n - LOTE 34\n - Price: 477.00 EUR"
56
+ - "Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C\
57
+ \ 90CM (CART.)', with quantity 144, unit UN:\n - LOTE 73\n - Price: 644.00 EUR"
58
+ - 'Item Description: ''Mesas de Mayo'', with quantity 2, unit Subcontracting Unit,
59
+ priced at 651.00 EUR, Origin: National'
60
+ pipeline_tag: sentence-similarity
61
+ library_name: sentence-transformers
62
+ metrics:
63
+ - pearson_cosine
64
+ - spearman_cosine
65
+ model-index:
66
+ - name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1
67
+ results:
68
+ - task:
69
+ type: semantic-similarity
70
+ name: Semantic Similarity
71
+ dataset:
72
+ name: Unknown
73
+ type: unknown
74
+ metrics:
75
+ - type: pearson_cosine
76
+ value: .nan
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: .nan
80
+ name: Spearman Cosine
81
+ ---
82
+
83
+ # SentenceTransformer based on nomic-ai/nomic-embed-text-v1
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) <!-- at revision 720244025c1a7e15661a174c63cce63c8218e52b -->
92
+ - **Maximum Sequence Length:** 8192 tokens
93
+ - **Output Dimensionality:** 768 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ <!-- - **Training Dataset:** Unknown -->
96
+ <!-- - **Language:** Unknown -->
97
+ <!-- - **License:** Unknown -->
98
+
99
+ ### Model Sources
100
+
101
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
102
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
103
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
104
+
105
+ ### Full Model Architecture
106
+
107
+ ```
108
+ SentenceTransformer(
109
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
110
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
111
+ (2): Normalize()
112
+ )
113
+ ```
114
+
115
+ ## Usage
116
+
117
+ ### Direct Usage (Sentence Transformers)
118
+
119
+ First install the Sentence Transformers library:
120
+
121
+ ```bash
122
+ pip install -U sentence-transformers
123
+ ```
124
+
125
+ Then you can load this model and run inference.
126
+ ```python
127
+ from sentence_transformers import SentenceTransformer
128
+
129
+ # Download from the 🤗 Hub
130
+ model = SentenceTransformer("ptpedroVortal/nomic_vortal_v3.4")
131
+ # Run inference
132
+ sentences = [
133
+ "Collect the details that are associated with product '' '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN",
134
+ "Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN:\n - LOTE 73\n - Price: 644.00 EUR",
135
+ "Item Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit, priced at 651.00 EUR, Origin: National",
136
+ ]
137
+ embeddings = model.encode(sentences)
138
+ print(embeddings.shape)
139
+ # [3, 768]
140
+
141
+ # Get the similarity scores for the embeddings
142
+ similarities = model.similarity(embeddings, embeddings)
143
+ print(similarities.shape)
144
+ # [3, 3]
145
+ ```
146
+
147
+ <!--
148
+ ### Direct Usage (Transformers)
149
+
150
+ <details><summary>Click to see the direct usage in Transformers</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Downstream Usage (Sentence Transformers)
157
+
158
+ You can finetune this model on your own dataset.
159
+
160
+ <details><summary>Click to expand</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Out-of-Scope Use
167
+
168
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
169
+ -->
170
+
171
+ ## Evaluation
172
+
173
+ ### Metrics
174
+
175
+ #### Semantic Similarity
176
+
177
+ * Evaluated with <code>__main__.CustomEvaluator</code>
178
+
179
+ | Metric | Value |
180
+ |:--------------------|:--------|
181
+ | pearson_cosine | nan |
182
+ | **spearman_cosine** | **nan** |
183
+
184
+ <!--
185
+ ## Bias, Risks and Limitations
186
+
187
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
188
+ -->
189
+
190
+ <!--
191
+ ### Recommendations
192
+
193
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
194
+ -->
195
+
196
+ ## Training Details
197
+
198
+ ### Training Dataset
199
+
200
+ #### Unnamed Dataset
201
+
202
+
203
+ * Size: 2,382 training samples
204
+ * Columns: <code>query</code>, <code>correct_node</code>, and <code>score</code>
205
+ * Approximate statistics based on the first 1000 samples:
206
+ | | query | correct_node | score |
207
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------|
208
+ | type | string | string | int |
209
+ | details | <ul><li>min: 15 tokens</li><li>mean: 56.3 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 49.65 tokens</li><li>max: 1729 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
210
+ * Samples:
211
+ | query | correct_node | score |
212
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
213
+ | <code>Collect the details that are associated with product '' '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN</code> | <code>LOTE 98<br>Description: '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN<br>Price: 940.00 EUR</code> | <code>1</code> |
214
+ | <code>Collect the details that are associated with product '' '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN</code> | <code>Product: '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN, Estimated Value: 696.00 EUR</code> | <code>1</code> |
215
+ | <code>Collect the details that are associated with Lot 4 product '' 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit</code> | <code>LOTE 44<br>Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit<br>Price: 542.00 EUR</code> | <code>1</code> |
216
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
217
+ ```json
218
+ {
219
+ "scale": 20.0,
220
+ "similarity_fct": "cos_sim"
221
+ }
222
+ ```
223
+
224
+ ### Evaluation Dataset
225
+
226
+ #### Unnamed Dataset
227
+
228
+
229
+ * Size: 297 evaluation samples
230
+ * Columns: <code>query</code>, <code>correct_node</code>, and <code>score</code>
231
+ * Approximate statistics based on the first 297 samples:
232
+ | | query | correct_node | score |
233
+ |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------|
234
+ | type | string | string | int |
235
+ | details | <ul><li>min: 15 tokens</li><li>mean: 55.37 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 46.58 tokens</li><li>max: 435 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
236
+ * Samples:
237
+ | query | correct_node | score |
238
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
239
+ | <code>Collect the details that are associated with Lot 7 product '' 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit</code> | <code>Item Description: 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit, priced at 628.00 EUR, Origin: National</code> | <code>1</code> |
240
+ | <code>Collect the details that are associated with Lot 10 product '' 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit</code> | <code>Details for 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit:<br> - LOTE 83<br> - Price: 940.00 EUR</code> | <code>1</code> |
241
+ | <code>Collect the details that are associated with Lot 1 product '' 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND</code> | <code>Product: 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND, Estimated Value: 714.00 EUR</code> | <code>1</code> |
242
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
243
+ ```json
244
+ {
245
+ "scale": 20.0,
246
+ "similarity_fct": "cos_sim"
247
+ }
248
+ ```
249
+
250
+ ### Training Hyperparameters
251
+ #### Non-Default Hyperparameters
252
+
253
+ - `eval_strategy`: steps
254
+ - `per_device_train_batch_size`: 16
255
+ - `per_device_eval_batch_size`: 16
256
+ - `num_train_epochs`: 10
257
+ - `warmup_ratio`: 0.1
258
+ - `bf16`: True
259
+ - `load_best_model_at_end`: True
260
+ - `batch_sampler`: no_duplicates
261
+
262
+ #### All Hyperparameters
263
+ <details><summary>Click to expand</summary>
264
+
265
+ - `overwrite_output_dir`: False
266
+ - `do_predict`: False
267
+ - `eval_strategy`: steps
268
+ - `prediction_loss_only`: True
269
+ - `per_device_train_batch_size`: 16
270
+ - `per_device_eval_batch_size`: 16
271
+ - `per_gpu_train_batch_size`: None
272
+ - `per_gpu_eval_batch_size`: None
273
+ - `gradient_accumulation_steps`: 1
274
+ - `eval_accumulation_steps`: None
275
+ - `torch_empty_cache_steps`: None
276
+ - `learning_rate`: 5e-05
277
+ - `weight_decay`: 0.0
278
+ - `adam_beta1`: 0.9
279
+ - `adam_beta2`: 0.999
280
+ - `adam_epsilon`: 1e-08
281
+ - `max_grad_norm`: 1.0
282
+ - `num_train_epochs`: 10
283
+ - `max_steps`: -1
284
+ - `lr_scheduler_type`: linear
285
+ - `lr_scheduler_kwargs`: {}
286
+ - `warmup_ratio`: 0.1
287
+ - `warmup_steps`: 0
288
+ - `log_level`: passive
289
+ - `log_level_replica`: warning
290
+ - `log_on_each_node`: True
291
+ - `logging_nan_inf_filter`: True
292
+ - `save_safetensors`: True
293
+ - `save_on_each_node`: False
294
+ - `save_only_model`: False
295
+ - `restore_callback_states_from_checkpoint`: False
296
+ - `no_cuda`: False
297
+ - `use_cpu`: False
298
+ - `use_mps_device`: False
299
+ - `seed`: 42
300
+ - `data_seed`: None
301
+ - `jit_mode_eval`: False
302
+ - `use_ipex`: False
303
+ - `bf16`: True
304
+ - `fp16`: False
305
+ - `fp16_opt_level`: O1
306
+ - `half_precision_backend`: auto
307
+ - `bf16_full_eval`: False
308
+ - `fp16_full_eval`: False
309
+ - `tf32`: None
310
+ - `local_rank`: 0
311
+ - `ddp_backend`: None
312
+ - `tpu_num_cores`: None
313
+ - `tpu_metrics_debug`: False
314
+ - `debug`: []
315
+ - `dataloader_drop_last`: False
316
+ - `dataloader_num_workers`: 0
317
+ - `dataloader_prefetch_factor`: None
318
+ - `past_index`: -1
319
+ - `disable_tqdm`: False
320
+ - `remove_unused_columns`: True
321
+ - `label_names`: None
322
+ - `load_best_model_at_end`: True
323
+ - `ignore_data_skip`: False
324
+ - `fsdp`: []
325
+ - `fsdp_min_num_params`: 0
326
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
327
+ - `fsdp_transformer_layer_cls_to_wrap`: None
328
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
329
+ - `deepspeed`: None
330
+ - `label_smoothing_factor`: 0.0
331
+ - `optim`: adamw_torch
332
+ - `optim_args`: None
333
+ - `adafactor`: False
334
+ - `group_by_length`: False
335
+ - `length_column_name`: length
336
+ - `ddp_find_unused_parameters`: None
337
+ - `ddp_bucket_cap_mb`: None
338
+ - `ddp_broadcast_buffers`: False
339
+ - `dataloader_pin_memory`: True
340
+ - `dataloader_persistent_workers`: False
341
+ - `skip_memory_metrics`: True
342
+ - `use_legacy_prediction_loop`: False
343
+ - `push_to_hub`: False
344
+ - `resume_from_checkpoint`: None
345
+ - `hub_model_id`: None
346
+ - `hub_strategy`: every_save
347
+ - `hub_private_repo`: False
348
+ - `hub_always_push`: False
349
+ - `gradient_checkpointing`: False
350
+ - `gradient_checkpointing_kwargs`: None
351
+ - `include_inputs_for_metrics`: False
352
+ - `include_for_metrics`: []
353
+ - `eval_do_concat_batches`: True
354
+ - `fp16_backend`: auto
355
+ - `push_to_hub_model_id`: None
356
+ - `push_to_hub_organization`: None
357
+ - `mp_parameters`:
358
+ - `auto_find_batch_size`: False
359
+ - `full_determinism`: False
360
+ - `torchdynamo`: None
361
+ - `ray_scope`: last
362
+ - `ddp_timeout`: 1800
363
+ - `torch_compile`: False
364
+ - `torch_compile_backend`: None
365
+ - `torch_compile_mode`: None
366
+ - `dispatch_batches`: None
367
+ - `split_batches`: None
368
+ - `include_tokens_per_second`: False
369
+ - `include_num_input_tokens_seen`: False
370
+ - `neftune_noise_alpha`: None
371
+ - `optim_target_modules`: None
372
+ - `batch_eval_metrics`: False
373
+ - `eval_on_start`: False
374
+ - `use_liger_kernel`: False
375
+ - `eval_use_gather_object`: False
376
+ - `average_tokens_across_devices`: False
377
+ - `prompts`: None
378
+ - `batch_sampler`: no_duplicates
379
+ - `multi_dataset_batch_sampler`: proportional
380
+
381
+ </details>
382
+
383
+ ### Training Logs
384
+ | Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
385
+ |:----------:|:-------:|:-------------:|:---------------:|:---------------:|
386
+ | 0.6711 | 100 | 0.6485 | 0.4410 | nan |
387
+ | 1.3356 | 200 | 0.5026 | 0.4399 | nan |
388
+ | **2.0067** | **300** | **0.491** | **0.4175** | **nan** |
389
+ | 2.6711 | 400 | 0.442 | 0.4409 | nan |
390
+ | 3.3356 | 500 | 0.3999 | 0.4421 | nan |
391
+ | 4.0067 | 600 | 0.367 | 0.6182 | nan |
392
+ | 4.6711 | 700 | 0.3743 | 0.6104 | nan |
393
+ | 5.3356 | 800 | 0.1972 | 0.6115 | nan |
394
+
395
+ * The bold row denotes the saved checkpoint.
396
+
397
+ ### Framework Versions
398
+ - Python: 3.10.14
399
+ - Sentence Transformers: 3.3.1
400
+ - Transformers: 4.47.0.dev0
401
+ - PyTorch: 2.5.1+cu121
402
+ - Accelerate: 1.1.1
403
+ - Datasets: 3.1.0
404
+ - Tokenizers: 0.20.4
405
+
406
+ ## Citation
407
+
408
+ ### BibTeX
409
+
410
+ #### Sentence Transformers
411
+ ```bibtex
412
+ @inproceedings{reimers-2019-sentence-bert,
413
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
414
+ author = "Reimers, Nils and Gurevych, Iryna",
415
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
416
+ month = "11",
417
+ year = "2019",
418
+ publisher = "Association for Computational Linguistics",
419
+ url = "https://arxiv.org/abs/1908.10084",
420
+ }
421
+ ```
422
+
423
+ #### MultipleNegativesRankingLoss
424
+ ```bibtex
425
+ @misc{henderson2017efficient,
426
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
427
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
428
+ year={2017},
429
+ eprint={1705.00652},
430
+ archivePrefix={arXiv},
431
+ primaryClass={cs.CL}
432
+ }
433
+ ```
434
+
435
+ <!--
436
+ ## Glossary
437
+
438
+ *Clearly define terms in order to be accessible across audiences.*
439
+ -->
440
+
441
+ <!--
442
+ ## Model Card Authors
443
+
444
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
445
+ -->
446
+
447
+ <!--
448
+ ## Model Card Contact
449
+
450
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
451
+ -->
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/nomic-embed-text-v1",
3
+ "activation_function": "swiglu",
4
+ "architectures": [
5
+ "NomicBertModel"
6
+ ],
7
+ "attn_pdrop": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
10
+ "AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel",
11
+ "AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
12
+ },
13
+ "bos_token_id": null,
14
+ "causal": false,
15
+ "dense_seq_output": true,
16
+ "embd_pdrop": 0.0,
17
+ "eos_token_id": null,
18
+ "fused_bias_fc": true,
19
+ "fused_dropout_add_ln": true,
20
+ "initializer_range": 0.02,
21
+ "layer_norm_epsilon": 1e-12,
22
+ "max_trained_positions": 2048,
23
+ "mlp_fc1_bias": false,
24
+ "mlp_fc2_bias": false,
25
+ "model_type": "nomic_bert",
26
+ "n_embd": 768,
27
+ "n_head": 12,
28
+ "n_inner": 3072,
29
+ "n_layer": 12,
30
+ "n_positions": 8192,
31
+ "pad_vocab_size_multiple": 64,
32
+ "parallel_block": false,
33
+ "parallel_block_tied_norm": false,
34
+ "prenorm": false,
35
+ "qkv_proj_bias": false,
36
+ "reorder_and_upcast_attn": false,
37
+ "resid_pdrop": 0.0,
38
+ "rotary_emb_base": 1000,
39
+ "rotary_emb_fraction": 1.0,
40
+ "rotary_emb_interleaved": false,
41
+ "rotary_emb_scale_base": null,
42
+ "rotary_scaling_factor": 2,
43
+ "scale_attn_by_inverse_layer_idx": false,
44
+ "scale_attn_weights": true,
45
+ "summary_activation": null,
46
+ "summary_first_dropout": 0.1,
47
+ "summary_proj_to_labels": true,
48
+ "summary_type": "cls_index",
49
+ "summary_use_proj": true,
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.47.0.dev0",
52
+ "type_vocab_size": 2,
53
+ "use_cache": true,
54
+ "use_flash_attn": true,
55
+ "use_rms_norm": false,
56
+ "use_xentropy": true,
57
+ "vocab_size": 30528
58
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0.dev0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5366ce602da11718a8048449afbaf0d41c0a37c7957b964ec5b7a5d36ad4b91
3
+ size 546938168
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 8192,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff