prithivMLmods's picture
Adding Evaluation Results (#1)
d953f52 verified
metadata
base_model:
  - prithivMLmods/Calcium-Opus-14B-Elite
  - prithivMLmods/Calcium-Opus-14B-Elite4
  - prithivMLmods/Calcium-Opus-14B-Elite3
  - prithivMLmods/Calcium-Opus-14B-Elite2
library_name: transformers
tags:
  - mergekit
  - merge
model-index:
  - name: Calcium-Opus-14B-Elite-Stock
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: wis-k/instruction-following-eval
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 61.43
            name: averaged accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: SaylorTwift/bbh
          split: test
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 46.9
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: lighteval/MATH-Hard
          split: test
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 27.19
            name: exact match
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 15.77
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 20.06
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 47.6
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
          name: Open LLM Leaderboard

Calcium-Opus-14B-Elite-Stock

Calcium-Opus-14B-Elite is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. These models have proven effective in context understanding, reasoning, and mathematical problem-solving.It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets, with a focus on chain-of-thought (CoT) reasoning for problem-solving. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.

merge

This is a merge of pre-trained language models created using mergekit.

Merge Method

This model was merged using the Model Stock merge method using prithivMLmods/Calcium-Opus-14B-Elite as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: prithivMLmods/Calcium-Opus-14B-Elite
  - model: prithivMLmods/Calcium-Opus-14B-Elite2
  - model: prithivMLmods/Calcium-Opus-14B-Elite3
  - model: prithivMLmods/Calcium-Opus-14B-Elite4
merge_method: model_stock
base_model: prithivMLmods/Calcium-Opus-14B-Elite
parameters:
  normalize: false
  int8_mask: true
dtype: bfloat16
tokenizer_source: "prithivMLmods/Calcium-Opus-14B-Elite"

Open LLM Leaderboard Evaluation Results

Detailed results can be found here! Summarized results can be found here!

Metric Value (%)
Average 36.49
IFEval (0-Shot) 61.43
BBH (3-Shot) 46.90
MATH Lvl 5 (4-Shot) 27.19
GPQA (0-shot) 15.77
MuSR (0-shot) 20.06
MMLU-PRO (5-shot) 47.60