Calcium-Opus-14B-Elite
Calcium-Opus-14B-Elite is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. These models have proven effective in context understanding, reasoning, and mathematical problem-solving.It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets, with a focus on chain-of-thought (CoT) reasoning for problem-solving. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.
Open-Evals
Rank | Model | Average | IFEval | BBH | MATH | GPQA | MUSR | MMLU | COâ‚‚ Consumption | Dated |
---|---|---|---|---|---|---|---|---|---|---|
108 | prithivMLmods/Calcium-Opus-14B-Elite | 38.38 | 60.52 | 46.93 | 37.69 | 16.55 | 20.78 | 47.80 | 2.01 | 01/23/2025 |
Key improvements include:
- Enhanced Knowledge and Expertise: The model demonstrates significantly more knowledge and greatly improved capabilities in coding and mathematics, thanks to specialized expert models in these domains.
- Improved Instruction Following: It shows significant advancements in following instructions, generating long texts (over 8K tokens), understanding structured data (e.g., tables), and producing structured outputs, especially in JSON format.
- Better Adaptability: The model is more resilient to diverse system prompts, enabling enhanced role-playing implementations and condition-setting for chatbots.
- Long-Context Support: It offers long-context support of up to 128K tokens and can generate up to 8K tokens in a single output.
- Multilingual Proficiency: The model supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
Quickstart with transformers
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Calcium-Opus-14B-Elite"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Intended Use
Reasoning and Context Understanding:
Designed to assist with complex reasoning tasks, contextual understanding, and solving problems requiring logical deduction and critical thinking.Mathematical Problem-Solving:
Specialized for performing advanced mathematical reasoning and calculations, making it suitable for educational, scientific, and research-oriented applications.Code Generation and Debugging:
Offers robust support for coding tasks, including writing, debugging, and optimizing code in various programming languages, ideal for developers and software engineers.Structured Data Analysis:
Excels in processing and analyzing structured data, such as tables and JSON, and generating structured outputs, which is useful for data analysts and automation workflows.Multilingual Applications:
Supports over 29 languages, making it versatile for global applications like multilingual chatbots, content generation, and translations.Extended Content Generation:
Capable of generating long-form content (over 8K tokens), useful for writing reports, articles, and creating detailed instructional guides.
Limitations
Hardware Requirements:
Due to its 20B parameter size and support for long-context inputs, running the model requires significant computational resources, including high-memory GPUs or TPUs.Potential Bias in Multilingual Outputs:
While it supports 29 languages, the quality and accuracy of outputs may vary depending on the language, especially for less-resourced languages.Inconsistent Outputs for Creative Tasks:
The model may occasionally produce inconsistent or repetitive results in creative writing, storytelling, or highly subjective tasks.Limited Real-World Awareness:
It lacks real-time knowledge of current events beyond its training cutoff, which may limit its ability to respond accurately to the latest information.Error Propagation in Long-Text Outputs:
In generating long texts, minor errors in early outputs can sometimes propagate, reducing the overall coherence and accuracy of the response.Dependency on High-Quality Prompts:
Performance may depend on the quality and specificity of the input prompt, requiring users to carefully design queries for optimal results.
- Downloads last month
- 0