pszemraj's picture
Update README.md
f59259f
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103-mlm-multi-emails-hq-x2bs
    results: []
datasets:
  - postbot/multi-emails-hq
language:
  - en
pipeline_tag: fill-mask
widget:
  - text: Can you please send me the <mask> by the end of the day?
    example_title: end of day
  - text: >-
      I hope this email finds you well. I wanted to follow up on our <mask>
      yesterday.
    example_title: follow-up
  - text: The meeting has been rescheduled to <mask>.
    example_title: reschedule
  - text: Please let me know if you need any further <mask> regarding the project.
    example_title: further help
  - text: >-
      I appreciate your prompt response to my previous email. Can you provide an
      update on the <mask> by tomorrow?
    example_title: provide update
  - text: Paris is the <mask> of France.
    example_title: paris (default)
  - text: The goal of life is <mask>.
    example_title: goal of life (default)

MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103-mlm-multi-emails-hq-x2bs

This model is a fine-tuned version of saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0371
  • Accuracy: 0.6450

Model description

  • masked language model
  • mini version of RoBERTa
  • does support uppercase text

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 16.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.2947 1.0 308 3.0832 0.5122
2.8727 2.0 616 2.6722 0.5662
2.6339 3.0 924 2.4797 0.5878
2.5053 4.0 1232 2.3833 0.6025
2.4531 5.0 1540 2.3085 0.6106
2.2852 6.0 1848 2.2451 0.6175
2.228 7.0 2156 2.1937 0.6244
2.2013 8.0 2464 2.1446 0.6310
2.1463 9.0 2772 2.1062 0.6357
2.0882 10.0 3080 2.0847 0.6370
2.1669 11.0 3388 2.0687 0.6399
2.0983 12.0 3696 2.0629 0.6423
2.1215 13.0 4004 2.0259 0.6476
2.1255 14.0 4312 2.0378 0.6461
2.1751 15.0 4620 2.0257 0.6458
1.9516 16.0 4928 2.0371 0.6450

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 2.0.0.dev20230212+cu118
  • Datasets 2.9.0
  • Tokenizers 0.13.2