MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103-mlm-multi-emails-hq-x2bs

This model is a fine-tuned version of saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0371
  • Accuracy: 0.6450

Model description

  • masked language model
  • mini version of RoBERTa
  • does support uppercase text

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 16.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.2947 1.0 308 3.0832 0.5122
2.8727 2.0 616 2.6722 0.5662
2.6339 3.0 924 2.4797 0.5878
2.5053 4.0 1232 2.3833 0.6025
2.4531 5.0 1540 2.3085 0.6106
2.2852 6.0 1848 2.2451 0.6175
2.228 7.0 2156 2.1937 0.6244
2.2013 8.0 2464 2.1446 0.6310
2.1463 9.0 2772 2.1062 0.6357
2.0882 10.0 3080 2.0847 0.6370
2.1669 11.0 3388 2.0687 0.6399
2.0983 12.0 3696 2.0629 0.6423
2.1215 13.0 4004 2.0259 0.6476
2.1255 14.0 4312 2.0378 0.6461
2.1751 15.0 4620 2.0257 0.6458
1.9516 16.0 4928 2.0371 0.6450

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 2.0.0.dev20230212+cu118
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.