pffaundez's picture
End of training
66249fa verified
|
raw
history blame
2.54 kB
metadata
license: mit
base_model: xlnet-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: trueparagraph.ai-xlnet
    results: []

trueparagraph.ai-xlnet

This model is a fine-tuned version of xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.8951
  • F1: 0.8984
  • Precision: 0.8674
  • Recall: 0.9316
  • Mcc: 0.7924
  • Roc Auc: 0.8952
  • Pr Auc: 0.8421
  • Log Loss: 1.8813
  • Loss: 0.2913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Mcc Roc Auc Pr Auc Log Loss Validation Loss
0.649 0.6297 500 0.8006 0.8195 0.7457 0.9095 0.6164 0.8010 0.7233 4.0119 0.4063
0.4104 1.2594 1000 0.8409 0.8294 0.8892 0.7772 0.6870 0.8406 0.8020 2.4398 0.4054
0.4101 1.8892 1500 0.8100 0.8359 0.7332 0.9722 0.6560 0.8107 0.7266 3.4982 0.4405
0.4046 2.5189 2000 0.7754 0.8120 0.6959 0.9747 0.6012 0.7762 0.6909 3.0282 0.5111
0.3992 3.1486 2500 0.8664 0.8625 0.8843 0.8418 0.7336 0.8663 0.8232 2.7164 0.3871
0.3691 3.7783 3000 0.8774 0.8850 0.8303 0.9475 0.7626 0.8777 0.8128 1.8936 0.3413
0.2581 4.4081 3500 0.8951 0.8984 0.8674 0.9316 0.7924 0.8952 0.8421 1.8813 0.2913

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1