trueparagraph.ai-xlnet

This model is a fine-tuned version of xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.8951
  • F1: 0.8984
  • Precision: 0.8674
  • Recall: 0.9316
  • Mcc: 0.7924
  • Roc Auc: 0.8952
  • Pr Auc: 0.8421
  • Log Loss: 1.8813
  • Loss: 0.2913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Mcc Roc Auc Pr Auc Log Loss Validation Loss
0.649 0.6297 500 0.8006 0.8195 0.7457 0.9095 0.6164 0.8010 0.7233 4.0119 0.4063
0.4104 1.2594 1000 0.8409 0.8294 0.8892 0.7772 0.6870 0.8406 0.8020 2.4398 0.4054
0.4101 1.8892 1500 0.8100 0.8359 0.7332 0.9722 0.6560 0.8107 0.7266 3.4982 0.4405
0.4046 2.5189 2000 0.7754 0.8120 0.6959 0.9747 0.6012 0.7762 0.6909 3.0282 0.5111
0.3992 3.1486 2500 0.8664 0.8625 0.8843 0.8418 0.7336 0.8663 0.8232 2.7164 0.3871
0.3691 3.7783 3000 0.8774 0.8850 0.8303 0.9475 0.7626 0.8777 0.8128 1.8936 0.3413
0.2581 4.4081 3500 0.8951 0.8984 0.8674 0.9316 0.7924 0.8952 0.8421 1.8813 0.2913

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
117M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pffaundez/trueparagraph.ai-xlnet

Finetuned
(73)
this model