nltpt

Enterprise
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

nltpt's activity

merve 
posted an update 1 day ago
view post
Post
1851
What a beginning to this year in open ML 🤠
Let's unwrap! merve/jan-10-releases-677fe34177759de0edfc9714

Multimodal 🖼️
> ByteDance released SA2VA: a family of vision LMs that can take image, video, text and visual prompts
> moondream2 is out with new capabilities like outputting structured data and gaze detection!
> Dataset: Alibaba DAMO lab released multimodal textbook — 22k hours worth of samples from instruction videos 🤯
> Dataset: SciCap captioning on scientific documents benchmark dataset is released along with the challenge!

LLMs 💬
> Microsoft released Phi-4, sota open-source 14B language model 🔥
> Dolphin is back with Dolphin 3.0 Llama 3.1 8B 🐬🐬
> Prime-RL released Eurus-2-7B-PRIME a new language model trained using PRIME alignment
> SmallThinker-3B is a new small reasoning LM based on Owen2.5-3B-Instruct 💭
> Dataset: QWQ-LONGCOT-500K is the dataset used to train SmallThinker, generated using QwQ-32B-preview 📕
> Dataset: @cfahlgren1 released React Code Instructions: a dataset of code instruction-code pairs 📕
> Dataset: Qwen team is on the roll, they just released CodeElo, a dataset of code preferences 👩🏻‍💻

Embeddings 🔖
> @MoritzLaurer released zero-shot version of ModernBERT large 👏
> KaLM is a new family of performant multilingual embedding models with MIT license built using Qwen2-0.5B

Image/Video Generation ⏯️
> NVIDIA released Cosmos, a new family of diffusion/autoregressive World Foundation Models generating worlds from images, videos and texts 🔥
> Adobe released TransPixar: a new text-to-video model that can generate assets with transparent backgrounds (a first!)
> Dataset: fal released cosmos-openvid-1m Cosmos-tokenized OpenVid-1M with samples from OpenVid-1M

Others
> Prior Labs released TabPFNv2, the best tabular transformer is out for classification and regression
> Metagene-1 is a new RNA language model that can be used for pathogen detection, zero-shot embedding and genome understanding
merve 
posted an update 3 days ago
view post
Post
1540
ByteDance just dropped SA2VA: a new family of vision LMs combining Qwen2VL/InternVL and SAM2 with MIT license 💗 ByteDance/sa2va-model-zoo-677e3084d71b5f108d00e093

> The models are capable of tasks involving vision-language understanding and visual referrals (referring segmentation) both for images and videos ⏯️

> The models come in 1B, 4B and 8B and are based on InternVL2.5 for base architecture and Qwen2, Qwen2.5 and InternLM2 for language model part (depending on the checkpoint)

> The model is very interesting, it has different encoders for different modalities each (visual prompt, text prompt, image and video) then it concatenates these to feed into LLM 💬

the output segmentation tokens are passed to SAM2, to sort of match text (captions or semantic classes) to masks ⤵️

> Their annotation pipeline is also interesting, they seems to use two open large vision LMs to refine the annotations, and have different levels of descriptions to provide consistency.
  • 1 reply
·
lewtun 
posted an update 6 days ago
view post
Post
3165
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!

https://x.com/casper_hansen_/status/1875872309996855343

Together with the recent PRIME method [2] for scaling RL, reasoning for open models is looking pretty exciting for 2025!

[1] Training Large Language Models to Reason in a Continuous Latent Space (2412.06769)
[2] https://huggingface.co./blog/ganqu/prime
Xenova 
posted an update 10 days ago
merve 
posted an update 11 days ago
view post
Post
4715
supercharge your LLM apps with smolagents 🔥

however cool your LLM is, without being agentic it can only go so far

enter smolagents: a new agent library by Hugging Face to make the LLM write code, do analysis and automate boring stuff!

Here's our blog for you to get started https://huggingface.co./blog/smolagents
lewtun 
posted an update 13 days ago
view post
Post
2067
This paper ( HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs (2412.18925)) has a really interesting recipe for inducing o1-like behaviour in Llama models:

* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting.
* Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases)
* Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1
* Use the resulting data for SFT & RL
* Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.

Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
  • 1 reply
·
merve 
posted an update 18 days ago
Xenova 
posted an update 24 days ago
view post
Post
3413
Introducing Moonshine Web: real-time speech recognition running 100% locally in your browser!
🚀 Faster and more accurate than Whisper
🔒 Privacy-focused (no data leaves your device)
⚡️ WebGPU accelerated (w/ WASM fallback)
🔥 Powered by ONNX Runtime Web and Transformers.js

Demo: webml-community/moonshine-web
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/moonshine-web
·
merve 
posted an update 25 days ago
view post
Post
2787
Aya by Cohere For AI can now see! 👀

C4AI community has built Maya 8B, a new open-source multilingual VLM built on SigLIP and Aya 8B 🌱 works on 8 languages! 🗣️

The authors extend Llava dataset using Aya's translation capabilities with 558k examples!
ry it here kkr5155/maya_demo

Dataset maya-multimodal/pretrain

Model maya-multimodal/maya 👏
kudos @nahidalam and team
  • 1 reply
·
merve 
posted an update 25 days ago
view post
Post
3297
Apollo is a new family of open-source video language models by Meta, where 3B model outperforms most 7B models and 7B outperforms most 30B models 🧶

✨ the models come in 1.5B https://huggingface.co./Apollo-LMMs/Apollo-1_5B-t32, 3B https://huggingface.co./Apollo-LMMs/Apollo-3B-t32 and 7B https://huggingface.co./Apollo-LMMs/Apollo-7B-t32 with A2.0 license, based on Qwen1.5 & Qwen2
✨ the authors also release a benchmark dataset https://huggingface.co./spaces/Apollo-LMMs/ApolloBench

The paper has a lot of experiments (they trained 84 models!) about what makes the video LMs work ⏯️

Try the demo for best setup here https://huggingface.co./spaces/Apollo-LMMs/Apollo-3B
they evaluate sampling strategies, scaling laws for models and datasets, video representation and more!
> The authors find out that whatever design decision was applied to small models also scale properly when the model and dataset are scaled 📈 scaling dataset has diminishing returns for smaller models
> They evaluate frame sampling strategies, and find that FPS sampling is better than uniform sampling, and they find 8-32 tokens per frame optimal
> They also compare image encoders, they try a variation of models from shape optimized SigLIP to DINOv2
they find google/siglip-so400m-patch14-384 to be most powerful 🔥
> they also compare freezing different parts of models, training all stages with some frozen parts give the best yield

They eventually release three models, where Apollo-3B outperforms most 7B models and Apollo 7B outperforms 30B models 🔥
·
lewtun 
posted an update 26 days ago
view post
Post
6708
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥

How? By combining step-wise reward models with tree search algorithms :)

We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"

We're open sourcing the full recipe and sharing a detailed blog post.

In our blog post we cover:

📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.

🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.

🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM

Here's the links:

- Blog post: HuggingFaceH4/blogpost-scaling-test-time-compute

- Code: https://github.com/huggingface/search-and-learn

Enjoy!
  • 2 replies
·
merve 
posted an update about 1 month ago
view post
Post
1766
A complete RAG pipeline includes a reranker, which ranks the documents to find the best document 📓
Same goes for multimodal RAG, multimodal rerankers which we can integrate to multimodal RAG pipelines!
Learn how to build a complete multimodal RAG pipeline with vidore/colqwen2-v1.0 as retriever, lightonai/MonoQwen2-VL-v0.1 as reranker, Qwen/Qwen2-VL-7B-Instruct as VLM in this notebook that runs on a GPU as small as L4 🔥 https://huggingface.co./learn/cookbook/multimodal_rag_using_document_retrieval_and_reranker_and_vlms
Xenova 
posted an update about 1 month ago
view post
Post
3026
Introducing TTS WebGPU: The first ever text-to-speech web app built with WebGPU acceleration! 🔥 High-quality and natural speech generation that runs 100% locally in your browser, powered by OuteTTS and Transformers.js. 🤗 Try it out yourself!

Demo: webml-community/text-to-speech-webgpu
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/text-to-speech-webgpu
Model: onnx-community/OuteTTS-0.2-500M (ONNX), OuteAI/OuteTTS-0.2-500M (PyTorch)
merve 
posted an update about 1 month ago
view post
Post
5598
This week in open-source AI was insane 🤠 A small recap🕺🏻 merve/dec-6-releases-67545caebe9fc4776faac0a3

Multimodal 🖼️
> Google shipped a PaliGemma 2, new iteration of PaliGemma with more sizes: 3B, 10B and 28B, with pre-trained and captioning variants 👏
> OpenGVLab released InternVL2, seven new vision LMs in different sizes, with sota checkpoint with MIT license ✨
> Qwen team at Alibaba released the base models of Qwen2VL models with 2B, 7B and 72B ckpts

LLMs 💬
> Meta released a new iteration of Llama 70B, Llama3.2-70B trained further
> EuroLLM-9B-Instruct is a new multilingual LLM for European languages with Apache 2.0 license 🔥
> Dataset: CohereForAI released GlobalMMLU, multilingual version of MMLU with 42 languages with Apache 2.0 license
> Dataset: QwQ-LongCoT-130K is a new dataset to train reasoning models
> Dataset: FineWeb2 just landed with multilinguality update! 🔥 nearly 8TB pretraining data in many languages!

Image/Video Generation 🖼️
> Tencent released HunyuanVideo, a new photorealistic video generation model
> OminiControl is a new editing/control framework for image generation models like Flux

Audio 🔊
> Indic-Parler-TTS is a new text2speech model made by community
merve 
posted an update about 1 month ago
reach-vb 
posted an update about 1 month ago
view post
Post
3921
VLMs are going through quite an open revolution AND on-device friendly sizes:

1. Google DeepMind w/ PaliGemma2 - 3B, 10B & 28B: google/paligemma-2-release-67500e1e1dbfdd4dee27ba48

2. OpenGVLabs w/ InternVL 2.5 - 1B, 2B, 4B, 8B, 26B, 38B & 78B: https://huggingface.co./collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c

3. Qwen w/ Qwen 2 VL - 2B, 7B & 72B: Qwen/qwen2-vl-66cee7455501d7126940800d

4. Microsoft w/ FlorenceVL - 3B & 8B: https://huggingface.co./jiuhai

5. Moondream2 w/ 0.5B: https://huggingface.co./vikhyatk/

What a time to be alive! 🔥

Update license

#1 opened about 1 month ago by
reach-vb