What happened yesterday in the Chinese AI community? 🚀
T2A-01-HD 👉 https://hailuo.ai/audio MiniMax's Text-to-Audio model, now in Hailuo AI, offers 300+ voices in 17+ languages and instant emotional voice cloning.
Tare 👉 https://www.trae.ai/ A new coding tool by Bytedance for professional developers, supporting English & Chinese with free access to Claude 3.5 and GPT-4 for a limited time.
Kimi K 1.5 👉 https://github.com/MoonshotAI/Kimi-k1.5 | https://kimi.ai/ An O1-level multi-modal model by MoonShot AI, utilizing reinforcement learning with long and short-chain-of-thought and supporting up to 128k tokens.
And today…
Hunyuan 3D-2.0 👉 tencent/Hunyuan3D-2 A SoTA 3D synthesis system for high-res textured assets by Tencent Hunyuan , with open weights and code!
Reminder: Don’t. Use. ChatGPT. As. A. Calculator. Seriously. 🤖
Loved listening to @sasha on Hard Fork—it really made me think.
A few takeaways that hit home: - Individual culpability only gets you so far. The real priority: demanding accountability and transparency from companies. - Evaluate if generative AI is the right tool for certain tasks (like search) before using it.
✨ MIT License : enabling distillation for custom models ✨ 32B & 70B models match OpenAI o1-mini in multiple capabilities ✨ API live now! Access Chain of Thought reasoning with model='deepseek-reasoner'
@meg, one of the best researchers in AI ethics, makes a critical point about autonomy: fully autonomous systems carry unknowable risks because they operate on computer logic rather than human logic.
The solution? Build systems that support & assist rather than override human decisions.
I highly recommend reading the blog post written by Meg, @evijit@sasha and @giadap. They define different levels of agent autonomy & provide a values-based analysis of risks, benefits, and uses of AI agents to help you make better decisions.
InternLM3-8B-instruct🔥 Trained on just 4T tokens, it outperforms Llama3.1-8B and Qwen2.5-7B in reasoning tasks, at 75% lower cost! internlm/internlm3-67875827c377690c01a9131d
🖖 Let me introduce the work I've done over the past three months: 𝗟𝗹𝗮𝗺𝗮-𝟯.𝟮-𝗧𝗮𝗶𝘄𝗮𝗻-𝟯𝗕 and 𝗟𝗹𝗮𝗺𝗮-𝟯.𝟮-𝗧𝗮𝗶𝘄𝗮𝗻-𝟯𝗕-𝗜𝗻𝘀𝘁𝗿𝘂𝗰𝘁, now open-sourced on 🤗 Hugging Face.
𝗹𝗶𝗮𝗻𝗴𝗵𝘀𝘂𝗻/𝗟𝗹𝗮𝗺𝗮-𝟯.𝟮-𝗧𝗮𝗶𝘄𝗮𝗻-𝟯𝗕: This model is built on top of 𝗺𝗲𝘁𝗮-𝗹𝗹𝗮𝗺𝗮/𝗟𝗹𝗮𝗺𝗮-𝟯.𝟮-𝟯𝗕 with continual pretraining. The training dataset consists of a mixture of Traditional Chinese and multilingual texts in specific proportions, including 20B tokens of Traditional Chinese text.
𝗹𝗶𝗮𝗻𝗴𝗵𝘀𝘂𝗻/𝗟𝗹𝗮𝗺𝗮-𝟯.𝟮-𝗧𝗮𝗶𝘄𝗮𝗻-𝟯𝗕-𝗜𝗻𝘀𝘁𝗿𝘂𝗰𝘁: This is a fine-tuned conversational model based on the foundation model.
This Llama-3.2-Taiwan open-source project is currently a one-person effort (yes, I did everything from text preparation — so exhausting!). If you're interested, feel free to join the Discord server for discussions.
🅱🅴🅽🅲🅷🅼🅰🆁🅺🅸🅽🅶
The evaluation was conducted using ikala/tmmluplus, though the README page does not yet reflect the latest results. The performance is close to the previous versions, indicating that further improvements might require adding more specialized knowledge in the datasets.
🅰 🅲🅰🅻🅻 🅵🅾🆁 🆂🆄🅿🅿🅾🆁🆃
If anyone is willing to provide compute resources, it would be greatly appreciated to help this project continue and grow. 💪
✨ MiniMax-text-01: - 456B with 45.9B activated per token - Combines Lightning Attention, Softmax Attention, and MoE for optimal performance - Training context up to 1M tokens, inference handles 4M tokens
✨ MiniMax-VL-01: - ViT-MLP-LLM framework ( non-transformer👀) - Handles image inputs from 336×336 to 2016×2016 - 694M image-caption pairs + 512B tokens processed across 4 stages
MiniCPM-o2.6 🔥 an end-side multimodal LLMs released by OpenBMB from the Chinese community Model: openbmb/MiniCPM-o-2_6 ✨ Real-time English/Chinese conversation, emotion control and ASR/STT ✨ Real-time video/audio understanding ✨ Processes up to 1.8M pixels, leads OCRBench & supports 30+ languages
🙋🏻♂️Hey there folks , Open LLM Europe just released Lucie 7B-Instruct model , a billingual instruct model trained on open data ! You can check out my unofficial demo here while we wait for the official inference api from the group : Tonic/Lucie-7B hope you like it 🚀
🔥 The AI Agent hype is real! This blog post deep dives into everything you need to know before deploying them: from key definitions to practical recommendations. A must-read for anyone building the future of autonomous systems.
📊 Key insight: A clear table breaking down the 5 levels of AI agents - from simple processors to fully autonomous systems. Essential framework for understanding where your agent stands on the autonomy spectrum
⚖️ Deep analysis of 15 core values reveals critical trade-offs: accuracy, privacy, safety, equity & more. The same features that make agents powerful can make them risky. Understanding these trade-offs is crucial for responsible deployment
🎯 6 key recommendations for the road ahead: - Create rigorous evaluation protocols - Study societal effects - Understand ripple effects - Improve transparency - Open source can make a positive difference - Monitor base model evolution
Published a new blogpost 📖 In this blogpost I have gone through the transformers' architecture emphasizing how shapes propagate throughout each layer. 🔗 https://huggingface.co./blog/not-lain/tensor-dims some interesting takeaways :