Hugging Face
Models
Datasets
Spaces
Posts
Docs
Enterprise
Pricing
Log In
Sign Up
19.4
TFLOPS
23
Mads
PRO
mhenrichsen
Follow
SanRosenberg's profile picture
AddiH's profile picture
vilhelmbergsoe's profile picture
45 followers
·
1 following
mhenrichsen
AI & ML interests
None yet
Recent Activity
new
activity
2 days ago
hexgrad/Kokoro-82M:
HF Inference API – 500 internal server error
new
activity
12 days ago
hexgrad/Kokoro-82M:
Free kokoro TTS endpoint - no strings attached.
replied
to
singhsidhukuldeep
's
post
about 1 month ago
Fascinating new research alert! Just read a groundbreaking paper on understanding Retrieval-Augmented Generation (RAG) systems and their performance factors. Key insights from this comprehensive study: >> Architecture Deep Dive The researchers analyzed RAG systems across 6 datasets (3 code-related, 3 QA-focused) using multiple LLMs. Their investigation revealed critical insights into four key design factors: Document Types Impact: • Oracle documents (ground truth) aren't always optimal • Distracting documents significantly degrade performance • Surprisingly, irrelevant documents boost code generation by up to 15.6% Retrieval Precision: • Performance varies dramatically by task • QA tasks need 20-100% retrieval recall • Perfect retrieval still fails up to 12% of the time on previously correct instances Document Selection: • More documents ≠ better results • Adding documents can cause errors on previously correct samples • Performance degradation increases ~1% per 5 additional documents in code tasks Prompt Engineering: • Most advanced prompting techniques underperform simple zero-shot prompts • Technique effectiveness varies significantly across models and tasks • Complex prompts excel at difficult problems but struggle with simple ones >> Technical Implementation The study utilized: • Multiple retrievers including BM25, dense retrievers, and specialized models • Comprehensive corpus of 70,956 unique API documents • Over 200,000 API calls and 1,000+ GPU hours of computation • Sophisticated evaluation metrics tracking both correctness and system confidence 💡 Key takeaway: RAG system optimization requires careful balancing of multiple factors - there's no one-size-fits-all solution.
View all activity
Organizations
spaces
2
Sort: Recently updated
Sleeping
🚀
Axolotl_Launcher
Runtime error
4
🚀
DanskGPT
models
13
Sort: Recently updated
mhenrichsen/gemma-2b-it
Text Generation
•
Updated
Feb 21, 2024
•
11
mhenrichsen/gemma-2b
Text Generation
•
Updated
Feb 21, 2024
•
124
•
1
mhenrichsen/gemma-7b-it
Text Generation
•
Updated
Feb 21, 2024
•
8
mhenrichsen/gemma-7b
Text Generation
•
Updated
Feb 21, 2024
•
529
•
4
mhenrichsen/danskgpt-tiny-chat
Text Generation
•
Updated
Jan 27, 2024
•
67
•
12
mhenrichsen/hestenettetLM
Text Generation
•
Updated
Jan 16, 2024
•
709
•
3
mhenrichsen/danskgpt-tiny
Text Generation
•
Updated
Jan 13, 2024
•
170
•
18
mhenrichsen/tinymix-8x1b
Text Generation
•
Updated
Jan 2, 2024
•
7
•
1
mhenrichsen/hviske
Automatic Speech Recognition
•
Updated
Dec 9, 2023
•
8
•
17
mhenrichsen/context-aware-splitter-1b-english
Text Generation
•
Updated
Nov 30, 2023
•
14
•
8
Expand 13 models
datasets
6
Sort: Recently updated
mhenrichsen/creator
Viewer
•
Updated
Dec 12, 2023
•
1k
•
35
mhenrichsen/context-aware-splits-english
Viewer
•
Updated
Nov 16, 2023
•
28k
•
41
•
5
mhenrichsen/hestenettet
Viewer
•
Updated
Nov 5, 2023
•
14.5k
•
49
•
3
mhenrichsen/terra
Viewer
•
Updated
Sep 27, 2023
•
25.4M
•
252
mhenrichsen/context-aware-splits
Viewer
•
Updated
Sep 17, 2023
•
12.3k
•
44
•
3
mhenrichsen/alpaca_2k_test
Viewer
•
Updated
Jul 22, 2023
•
2k
•
5.52k
•
25