ireneisdoomed's picture
chore: update model
1e49adc verified
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: l2g_model_1006.pkl
widget:
- structuredData:
distanceTssMean:
- 0.1378757804632187
- 0.004574988503009081
- 0.01267080195248127
distanceTssMinimum:
- 0.02554949000477791
- 9.566087828716263e-05
- 0.00206877407617867
eqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
eqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
eqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
eqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
pqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
sqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
studyLocusId:
- -6454334657549107000
- 6087706114048421000
- -744015116205320800
tuqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
tuqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
tuqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
tuqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
vepMaximum:
- 0.0
- 0.0
- 0.0
vepMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
vepMean:
- 0.0
- 0.0
- 0.0
vepMeanNeighborhood:
- 0.0
- 0.0
- 0.0
---
# Model description
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
- Distance: (from credible set variants to gene)
- Molecular QTL Colocalization
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
- Variant Pathogenicity: (from VEP)
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
## Intended uses & limitations
[More Information Needed]
## Training Procedure
Gradient Boosting Classifier
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|--------------|
| ccp_alpha | 0.0 |
| criterion | friedman_mse |
| init | |
| learning_rate | 0.1 |
| loss | log_loss |
| max_depth | 5 |
| max_features | |
| max_leaf_nodes | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| n_estimators | 100 |
| n_iter_no_change | |
| random_state | 42 |
| subsample | 1.0 |
| tol | 0.0001 |
| validation_fraction | 0.1 |
| verbose | 0 |
| warm_start | False |
</details>
# How to Get Started with the Model
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
The model can then be used to make predictions using the `predict` method.
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
# Citation
https://doi.org/10.1038/s41588-021-00945-5
# License
MIT