File size: 3,843 Bytes
66fb4bf 1220246 896bea9 9c77234 66fb4bf bbf73f3 66fb4bf 1220246 9c77234 1220246 896bea9 66fb4bf 1e49adc 66fb4bf 1220246 bbf73f3 1220246 bbf73f3 1220246 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: l2g_model_1006.pkl
widget:
- structuredData:
distanceTssMean:
- 0.1378757804632187
- 0.004574988503009081
- 0.01267080195248127
distanceTssMinimum:
- 0.02554949000477791
- 9.566087828716263e-05
- 0.00206877407617867
eqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
eqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
eqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
eqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
pqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
pqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
sqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
sqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
studyLocusId:
- -6454334657549107000
- 6087706114048421000
- -744015116205320800
tuqtlColocClppMaximum:
- 0.0
- 0.0
- 0.0
tuqtlColocClppMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
tuqtlColocLlrMaximum:
- 0.0
- 0.0
- 0.0
tuqtlColocLlrMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
vepMaximum:
- 0.0
- 0.0
- 0.0
vepMaximumNeighborhood:
- 0.0
- 0.0
- 0.0
vepMean:
- 0.0
- 0.0
- 0.0
vepMeanNeighborhood:
- 0.0
- 0.0
- 0.0
---
# Model description
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
- Distance: (from credible set variants to gene)
- Molecular QTL Colocalization
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
- Variant Pathogenicity: (from VEP)
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
## Intended uses & limitations
[More Information Needed]
## Training Procedure
Gradient Boosting Classifier
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|--------------|
| ccp_alpha | 0.0 |
| criterion | friedman_mse |
| init | |
| learning_rate | 0.1 |
| loss | log_loss |
| max_depth | 5 |
| max_features | |
| max_leaf_nodes | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| n_estimators | 100 |
| n_iter_no_change | |
| random_state | 42 |
| subsample | 1.0 |
| tol | 0.0001 |
| validation_fraction | 0.1 |
| verbose | 0 |
| warm_start | False |
</details>
# How to Get Started with the Model
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
The model can then be used to make predictions using the `predict` method.
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
# Citation
https://doi.org/10.1038/s41588-021-00945-5
# License
MIT
|