ireneisdoomed commited on
Commit
9c77234
1 Parent(s): 896bea9

chore: update model

Browse files
Files changed (2) hide show
  1. README.md +4 -6
  2. l2g_model_1006.pkl +1 -1
README.md CHANGED
@@ -2,6 +2,7 @@
2
  # Model description
3
 
4
  The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
 
5
  - Distance: (from credible set variants to gene)
6
  - Molecular QTL Colocalization
7
  - Chromatin Interaction: (e.g., promoter-capture Hi-C)
@@ -16,7 +17,7 @@ The locus-to-gene (L2G) model derives features to prioritise likely causal genes
16
 
17
  ## Training Procedure
18
 
19
- [More Information Needed]
20
 
21
  ### Hyperparameters
22
 
@@ -52,17 +53,14 @@ The locus-to-gene (L2G) model derives features to prioritise likely causal genes
52
 
53
  To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
54
  The model can then be used to make predictions using the `predict` method.
55
- More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
 
56
 
57
 
58
  # Citation
59
 
60
  https://doi.org/10.1038/s41588-021-00945-5
61
 
62
- # Training Procedure
63
-
64
- Gradient Boosting Classifier
65
-
66
  # License
67
 
68
  MIT
 
2
  # Model description
3
 
4
  The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
5
+
6
  - Distance: (from credible set variants to gene)
7
  - Molecular QTL Colocalization
8
  - Chromatin Interaction: (e.g., promoter-capture Hi-C)
 
17
 
18
  ## Training Procedure
19
 
20
+ Gradient Boosting Classifier
21
 
22
  ### Hyperparameters
23
 
 
53
 
54
  To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
55
  The model can then be used to make predictions using the `predict` method.
56
+
57
+ More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
58
 
59
 
60
  # Citation
61
 
62
  https://doi.org/10.1038/s41588-021-00945-5
63
 
 
 
 
 
64
  # License
65
 
66
  MIT
l2g_model_1006.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a1a003e23bd67281f302ceb1e81e1a24c9b6ee62526f074486b8f38b5f83b707
3
  size 2796518
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a65983524c94451d60bb1649b6f7626bf764dccdc471c7934650ee281ec253fa
3
  size 2796518