ireneisdoomed commited on
Commit
bbf73f3
1 Parent(s): 1220246

chore: update model

Browse files
Files changed (2) hide show
  1. README.md +17 -208
  2. l2g_model_1006.pkl +1 -1
README.md CHANGED
@@ -1,110 +1,15 @@
1
- ---
2
- library_name: sklearn
3
- tags:
4
- - sklearn
5
- - skops
6
- - tabular-classification
7
- model_format: pickle
8
- model_file: l2g_model_1006.pkl
9
- widget:
10
- - structuredData:
11
- distanceTssMean:
12
- - 0.1378757804632187
13
- - 0.004574988503009081
14
- - 0.01267080195248127
15
- distanceTssMinimum:
16
- - 0.02554949000477791
17
- - 9.566087828716263e-05
18
- - 0.00206877407617867
19
- eqtlColocClppMaximum:
20
- - 0.0
21
- - 0.0
22
- - 0.0
23
- eqtlColocClppMaximumNeighborhood:
24
- - 0.0
25
- - 0.0
26
- - 0.0
27
- eqtlColocLlrMaximum:
28
- - 0.0
29
- - 0.0
30
- - 0.0
31
- eqtlColocLlrMaximumNeighborhood:
32
- - 0.0
33
- - 0.0
34
- - 0.0
35
- pqtlColocClppMaximum:
36
- - 0.0
37
- - 0.0
38
- - 0.0
39
- pqtlColocClppMaximumNeighborhood:
40
- - 0.0
41
- - 0.0
42
- - 0.0
43
- pqtlColocLlrMaximum:
44
- - 0.0
45
- - 0.0
46
- - 0.0
47
- pqtlColocLlrMaximumNeighborhood:
48
- - 0.0
49
- - 0.0
50
- - 0.0
51
- sqtlColocClppMaximum:
52
- - 0.0
53
- - 0.0
54
- - 0.0
55
- sqtlColocClppMaximumNeighborhood:
56
- - 0.0
57
- - 0.0
58
- - 0.0
59
- sqtlColocLlrMaximum:
60
- - 0.0
61
- - 0.0
62
- - 0.0
63
- sqtlColocLlrMaximumNeighborhood:
64
- - 0.0
65
- - 0.0
66
- - 0.0
67
- studyLocusId:
68
- - -6454334657549107000
69
- - 6087706114048421000
70
- - -744015116205320800
71
- tuqtlColocClppMaximum:
72
- - 0.0
73
- - 0.0
74
- - 0.0
75
- tuqtlColocClppMaximumNeighborhood:
76
- - 0.0
77
- - 0.0
78
- - 0.0
79
- tuqtlColocLlrMaximum:
80
- - 0.0
81
- - 0.0
82
- - 0.0
83
- tuqtlColocLlrMaximumNeighborhood:
84
- - 0.0
85
- - 0.0
86
- - 0.0
87
- vepMaximum:
88
- - 0.0
89
- - 0.0
90
- - 0.0
91
- vepMaximumNeighborhood:
92
- - 0.0
93
- - 0.0
94
- - 0.0
95
- vepMean:
96
- - 0.0
97
- - 0.0
98
- - 0.0
99
- vepMeanNeighborhood:
100
- - 0.0
101
- - 0.0
102
- - 0.0
103
- ---
104
 
105
  # Model description
106
 
107
- This is the best model
 
 
 
 
 
 
 
 
108
 
109
  ## Intended uses & limitations
110
 
@@ -144,118 +49,22 @@ This is the best model
144
 
145
  </details>
146
 
147
- ### Model Plot
148
-
149
- <style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
150
- }#sk-container-id-1 {color: var(--sklearn-color-text);
151
- }#sk-container-id-1 pre {padding: 0;
152
- }#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
153
- }#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
154
- }#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
155
- }#sk-container-id-1 div.sk-text-repr-fallback {display: none;
156
- }div.sk-parallel-item,
157
- div.sk-serial,
158
- div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
159
- }/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
160
- }#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
161
- }#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
162
- }#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
163
- }#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
164
- }#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
165
- }/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
166
- }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
167
- clickable and can be expanded/collapsed.
168
- - Pipeline and ColumnTransformer use this feature and define the default style
169
- - Estimators will overwrite some part of the style using the `sk-estimator` class
170
- *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
171
- }/* Toggleable label */
172
- #sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
173
- }#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
174
- }#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
175
- }/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
176
- }#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
177
- }#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
178
- }#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
179
- }#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
180
- }#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
181
- }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
182
- }#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
183
- }/* Estimator-specific style *//* Colorize estimator box */
184
- #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
185
- }#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
186
- }#sk-container-id-1 div.sk-label label.sk-toggleable__label,
187
- #sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
188
- }/* On hover, darken the color of the background */
189
- #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
190
- }/* Label box, darken color on hover, fitted */
191
- #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
192
- }/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
193
- }#sk-container-id-1 div.sk-label-container {text-align: center;
194
- }/* Estimator-specific */
195
- #sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
196
- }#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
197
- }/* on hover */
198
- #sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
199
- }#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
200
- }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
201
- a:link.sk-estimator-doc-link,
202
- a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
203
- }.sk-estimator-doc-link.fitted,
204
- a:link.sk-estimator-doc-link.fitted,
205
- a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
206
- }/* On hover */
207
- div.sk-estimator:hover .sk-estimator-doc-link:hover,
208
- .sk-estimator-doc-link:hover,
209
- div.sk-label-container:hover .sk-estimator-doc-link:hover,
210
- .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
211
- }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
212
- .sk-estimator-doc-link.fitted:hover,
213
- div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
214
- .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
215
- }/* Span, style for the box shown on hovering the info icon */
216
- .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
217
- }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
218
- }.sk-estimator-doc-link:hover span {display: block;
219
- }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
220
- }#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
221
- }/* On hover */
222
- #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
223
- }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
224
- }
225
- </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>GradientBoostingClassifier(max_depth=5, random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;GradientBoostingClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html">?<span>Documentation for GradientBoostingClassifier</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>GradientBoostingClassifier(max_depth=5, random_state=42)</pre></div> </div></div></div></div>
226
-
227
- ## Evaluation Results
228
-
229
- [More Information Needed]
230
-
231
  # How to Get Started with the Model
232
 
233
- [More Information Needed]
234
 
235
- # Model Card Authors
236
-
237
- Irene
238
-
239
- # Model Card Contact
240
-
241
- You can contact the model card authors through following channels:
242
- [More Information Needed]
243
 
244
  # Citation
245
 
246
- Below you can find information related to citation.
247
-
248
- **BibTeX:**
249
- ```
250
- [More Information Needed]
251
- ```
252
-
253
- # Model name
254
 
255
- L2G model
256
 
257
- # metadata
258
 
259
- ## license
260
 
261
  MIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  # Model description
3
 
4
+
5
+ The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
6
+ - Distance: (from credible set variants to gene)
7
+ - Molecular QTL Colocalization
8
+ - Chromatin Interaction: (e.g., promoter-capture Hi-C)
9
+ - Variant Pathogenicity: (from VEP)
10
+
11
+ More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
12
+
13
 
14
  ## Intended uses & limitations
15
 
 
49
 
50
  </details>
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  # How to Get Started with the Model
53
 
 
54
 
55
+ To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
56
+ The model can then be used to make predictions using the `predict` method.
57
+ More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
58
+
 
 
 
 
59
 
60
  # Citation
61
 
62
+ https://doi.org/10.1038/s41588-021-00945-5
 
 
 
 
 
 
 
63
 
64
+ # Training Procedure
65
 
66
+ Gradient Boosting Classifier
67
 
68
+ # License
69
 
70
  MIT
l2g_model_1006.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:937e9b6ce0ff089083225e825fada4bd0e2eae9c2fd3fdfa68913b4a4434a11d
3
  size 2796518
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:074eb7569047f5391e2bf9b292a9c152677bf6e90d5123da633b4b7180079ae4
3
  size 2796518