ireneisdoomed
commited on
Commit
•
bbf73f3
1
Parent(s):
1220246
chore: update model
Browse files- README.md +17 -208
- l2g_model_1006.pkl +1 -1
README.md
CHANGED
@@ -1,110 +1,15 @@
|
|
1 |
-
---
|
2 |
-
library_name: sklearn
|
3 |
-
tags:
|
4 |
-
- sklearn
|
5 |
-
- skops
|
6 |
-
- tabular-classification
|
7 |
-
model_format: pickle
|
8 |
-
model_file: l2g_model_1006.pkl
|
9 |
-
widget:
|
10 |
-
- structuredData:
|
11 |
-
distanceTssMean:
|
12 |
-
- 0.1378757804632187
|
13 |
-
- 0.004574988503009081
|
14 |
-
- 0.01267080195248127
|
15 |
-
distanceTssMinimum:
|
16 |
-
- 0.02554949000477791
|
17 |
-
- 9.566087828716263e-05
|
18 |
-
- 0.00206877407617867
|
19 |
-
eqtlColocClppMaximum:
|
20 |
-
- 0.0
|
21 |
-
- 0.0
|
22 |
-
- 0.0
|
23 |
-
eqtlColocClppMaximumNeighborhood:
|
24 |
-
- 0.0
|
25 |
-
- 0.0
|
26 |
-
- 0.0
|
27 |
-
eqtlColocLlrMaximum:
|
28 |
-
- 0.0
|
29 |
-
- 0.0
|
30 |
-
- 0.0
|
31 |
-
eqtlColocLlrMaximumNeighborhood:
|
32 |
-
- 0.0
|
33 |
-
- 0.0
|
34 |
-
- 0.0
|
35 |
-
pqtlColocClppMaximum:
|
36 |
-
- 0.0
|
37 |
-
- 0.0
|
38 |
-
- 0.0
|
39 |
-
pqtlColocClppMaximumNeighborhood:
|
40 |
-
- 0.0
|
41 |
-
- 0.0
|
42 |
-
- 0.0
|
43 |
-
pqtlColocLlrMaximum:
|
44 |
-
- 0.0
|
45 |
-
- 0.0
|
46 |
-
- 0.0
|
47 |
-
pqtlColocLlrMaximumNeighborhood:
|
48 |
-
- 0.0
|
49 |
-
- 0.0
|
50 |
-
- 0.0
|
51 |
-
sqtlColocClppMaximum:
|
52 |
-
- 0.0
|
53 |
-
- 0.0
|
54 |
-
- 0.0
|
55 |
-
sqtlColocClppMaximumNeighborhood:
|
56 |
-
- 0.0
|
57 |
-
- 0.0
|
58 |
-
- 0.0
|
59 |
-
sqtlColocLlrMaximum:
|
60 |
-
- 0.0
|
61 |
-
- 0.0
|
62 |
-
- 0.0
|
63 |
-
sqtlColocLlrMaximumNeighborhood:
|
64 |
-
- 0.0
|
65 |
-
- 0.0
|
66 |
-
- 0.0
|
67 |
-
studyLocusId:
|
68 |
-
- -6454334657549107000
|
69 |
-
- 6087706114048421000
|
70 |
-
- -744015116205320800
|
71 |
-
tuqtlColocClppMaximum:
|
72 |
-
- 0.0
|
73 |
-
- 0.0
|
74 |
-
- 0.0
|
75 |
-
tuqtlColocClppMaximumNeighborhood:
|
76 |
-
- 0.0
|
77 |
-
- 0.0
|
78 |
-
- 0.0
|
79 |
-
tuqtlColocLlrMaximum:
|
80 |
-
- 0.0
|
81 |
-
- 0.0
|
82 |
-
- 0.0
|
83 |
-
tuqtlColocLlrMaximumNeighborhood:
|
84 |
-
- 0.0
|
85 |
-
- 0.0
|
86 |
-
- 0.0
|
87 |
-
vepMaximum:
|
88 |
-
- 0.0
|
89 |
-
- 0.0
|
90 |
-
- 0.0
|
91 |
-
vepMaximumNeighborhood:
|
92 |
-
- 0.0
|
93 |
-
- 0.0
|
94 |
-
- 0.0
|
95 |
-
vepMean:
|
96 |
-
- 0.0
|
97 |
-
- 0.0
|
98 |
-
- 0.0
|
99 |
-
vepMeanNeighborhood:
|
100 |
-
- 0.0
|
101 |
-
- 0.0
|
102 |
-
- 0.0
|
103 |
-
---
|
104 |
|
105 |
# Model description
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
## Intended uses & limitations
|
110 |
|
@@ -144,118 +49,22 @@ This is the best model
|
|
144 |
|
145 |
</details>
|
146 |
|
147 |
-
### Model Plot
|
148 |
-
|
149 |
-
<style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
|
150 |
-
}#sk-container-id-1 {color: var(--sklearn-color-text);
|
151 |
-
}#sk-container-id-1 pre {padding: 0;
|
152 |
-
}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
|
153 |
-
}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
|
154 |
-
}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
|
155 |
-
}#sk-container-id-1 div.sk-text-repr-fallback {display: none;
|
156 |
-
}div.sk-parallel-item,
|
157 |
-
div.sk-serial,
|
158 |
-
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
|
159 |
-
}/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
|
160 |
-
}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
|
161 |
-
}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
|
162 |
-
}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
|
163 |
-
}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
|
164 |
-
}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
|
165 |
-
}/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
|
166 |
-
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
|
167 |
-
clickable and can be expanded/collapsed.
|
168 |
-
- Pipeline and ColumnTransformer use this feature and define the default style
|
169 |
-
- Estimators will overwrite some part of the style using the `sk-estimator` class
|
170 |
-
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
|
171 |
-
}/* Toggleable label */
|
172 |
-
#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
|
173 |
-
}#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
|
174 |
-
}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
|
175 |
-
}/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
176 |
-
}#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
|
177 |
-
}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
178 |
-
}#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
|
179 |
-
}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
|
180 |
-
}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
|
181 |
-
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
|
182 |
-
}#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
|
183 |
-
}/* Estimator-specific style *//* Colorize estimator box */
|
184 |
-
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
|
185 |
-
}#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
|
186 |
-
}#sk-container-id-1 div.sk-label label.sk-toggleable__label,
|
187 |
-
#sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
|
188 |
-
}/* On hover, darken the color of the background */
|
189 |
-
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
|
190 |
-
}/* Label box, darken color on hover, fitted */
|
191 |
-
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
|
192 |
-
}/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
|
193 |
-
}#sk-container-id-1 div.sk-label-container {text-align: center;
|
194 |
-
}/* Estimator-specific */
|
195 |
-
#sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
196 |
-
}#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
|
197 |
-
}/* on hover */
|
198 |
-
#sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
|
199 |
-
}#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
|
200 |
-
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
|
201 |
-
a:link.sk-estimator-doc-link,
|
202 |
-
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
|
203 |
-
}.sk-estimator-doc-link.fitted,
|
204 |
-
a:link.sk-estimator-doc-link.fitted,
|
205 |
-
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
|
206 |
-
}/* On hover */
|
207 |
-
div.sk-estimator:hover .sk-estimator-doc-link:hover,
|
208 |
-
.sk-estimator-doc-link:hover,
|
209 |
-
div.sk-label-container:hover .sk-estimator-doc-link:hover,
|
210 |
-
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
211 |
-
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
|
212 |
-
.sk-estimator-doc-link.fitted:hover,
|
213 |
-
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
|
214 |
-
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
215 |
-
}/* Span, style for the box shown on hovering the info icon */
|
216 |
-
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
|
217 |
-
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
|
218 |
-
}.sk-estimator-doc-link:hover span {display: block;
|
219 |
-
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
|
220 |
-
}#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
|
221 |
-
}/* On hover */
|
222 |
-
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
223 |
-
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
|
224 |
-
}
|
225 |
-
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>GradientBoostingClassifier(max_depth=5, random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> GradientBoostingClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html">?<span>Documentation for GradientBoostingClassifier</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>GradientBoostingClassifier(max_depth=5, random_state=42)</pre></div> </div></div></div></div>
|
226 |
-
|
227 |
-
## Evaluation Results
|
228 |
-
|
229 |
-
[More Information Needed]
|
230 |
-
|
231 |
# How to Get Started with the Model
|
232 |
|
233 |
-
[More Information Needed]
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
# Model Card Contact
|
240 |
-
|
241 |
-
You can contact the model card authors through following channels:
|
242 |
-
[More Information Needed]
|
243 |
|
244 |
# Citation
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
**BibTeX:**
|
249 |
-
```
|
250 |
-
[More Information Needed]
|
251 |
-
```
|
252 |
-
|
253 |
-
# Model name
|
254 |
|
255 |
-
|
256 |
|
257 |
-
|
258 |
|
259 |
-
|
260 |
|
261 |
MIT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# Model description
|
3 |
|
4 |
+
|
5 |
+
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
|
6 |
+
- Distance: (from credible set variants to gene)
|
7 |
+
- Molecular QTL Colocalization
|
8 |
+
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
|
9 |
+
- Variant Pathogenicity: (from VEP)
|
10 |
+
|
11 |
+
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
|
12 |
+
|
13 |
|
14 |
## Intended uses & limitations
|
15 |
|
|
|
49 |
|
50 |
</details>
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# How to Get Started with the Model
|
53 |
|
|
|
54 |
|
55 |
+
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
|
56 |
+
The model can then be used to make predictions using the `predict` method.
|
57 |
+
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
|
58 |
+
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Citation
|
61 |
|
62 |
+
https://doi.org/10.1038/s41588-021-00945-5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Training Procedure
|
65 |
|
66 |
+
Gradient Boosting Classifier
|
67 |
|
68 |
+
# License
|
69 |
|
70 |
MIT
|
l2g_model_1006.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2796518
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:074eb7569047f5391e2bf9b292a9c152677bf6e90d5123da633b4b7180079ae4
|
3 |
size 2796518
|