File size: 2,164 Bytes
1220246
 
 
896bea9
9c77234
bbf73f3
 
 
 
 
 
 
1220246
 
 
 
 
 
 
9c77234
1220246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896bea9
bbf73f3
9c77234
 
bbf73f3
1220246
 
 
bbf73f3
1220246
bbf73f3
1220246
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

# Model description

The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:

    - Distance: (from credible set variants to gene)
    - Molecular QTL Colocalization
    - Chromatin Interaction: (e.g., promoter-capture Hi-C)
    - Variant Pathogenicity: (from VEP)

    More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
    

## Intended uses & limitations

[More Information Needed]

## Training Procedure

Gradient Boosting Classifier

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter           | Value        |
|--------------------------|--------------|
| ccp_alpha                | 0.0          |
| criterion                | friedman_mse |
| init                     |              |
| learning_rate            | 0.1          |
| loss                     | log_loss     |
| max_depth                | 5            |
| max_features             |              |
| max_leaf_nodes           |              |
| min_impurity_decrease    | 0.0          |
| min_samples_leaf         | 1            |
| min_samples_split        | 2            |
| min_weight_fraction_leaf | 0.0          |
| n_estimators             | 100          |
| n_iter_no_change         |              |
| random_state             | 42           |
| subsample                | 1.0          |
| tol                      | 0.0001       |
| validation_fraction      | 0.1          |
| verbose                  | 0            |
| warm_start               | False        |

</details>

# How to Get Started with the Model

To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
    The model can then be used to make predictions using the `predict` method.
    
    More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
    

# Citation

https://doi.org/10.1038/s41588-021-00945-5

# License

MIT