ireneisdoomed's picture
chore: update model
bf68e58 verified
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_format: skops
model_file: classifier.skops
widget:
  - structuredData:
      distanceTssMean:
        - 0.9900000095367432
        - 1
        - 0.8871889114379883
      distanceTssMinimum:
        - 0.9900000095367432
        - 1
        - 0.8871889114379883
      eqtlColocClppMaximum:
        - 0.9971522092819214
        - 0.47164207696914673
        - 0
      eqtlColocClppMaximumNeighborhood:
        - -4
        - -2.024019956588745
        - 0
      eqtlColocLlrMaximum:
        - 0
        - 0
        - 0
      eqtlColocLlrMaximumNeighborhood:
        - 0
        - 0
        - 0
      pqtlColocClppMaximum:
        - 0
        - 0
        - 0
      pqtlColocClppMaximumNeighborhood:
        - 0
        - 0
        - 0
      pqtlColocLlrMaximum:
        - 0
        - 0
        - 0
      pqtlColocLlrMaximumNeighborhood:
        - 0
        - 0
        - 0
      sqtlColocClppMaximum:
        - 0.023741500452160835
        - 0
        - 0
      sqtlColocClppMaximumNeighborhood:
        - -1.2454184293746948
        - 0
        - 0
      sqtlColocLlrMaximum:
        - 0
        - 0
        - 0
      sqtlColocLlrMaximumNeighborhood:
        - 0
        - 0
        - 0
      studyLocusId:
        - 6277076726371455000
        - 760060231087881200
        - 4858236220158119000
      tuqtlColocClppMaximum:
        - 0.1552392542362213
        - 0
        - 0
      tuqtlColocClppMaximumNeighborhood:
        - -4
        - 0
        - 0
      tuqtlColocLlrMaximum:
        - 0
        - 0
        - 0
      tuqtlColocLlrMaximumNeighborhood:
        - 0
        - 0
        - 0
      vepMaximum:
        - 0.015523924492299557
        - 0.6600000262260437
        - 0
      vepMaximumNeighborhood:
        - 0.01767149195075035
        - 0.6600000262260437
        - 0
      vepMean:
        - 0.015523924492299557
        - 0.6600000262260437
        - 0
      vepMeanNeighborhood:
        - 0.0036685012746602297
        - 0.6600000262260437
        - 0

Model description

The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:

    - Distance: (from credible set variants to gene)
    - Molecular QTL Colocalization
    - Chromatin Interaction: (e.g., promoter-capture Hi-C)
    - Variant Pathogenicity: (from VEP)

    More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
    

Intended uses & limitations

[More Information Needed]

Training Procedure

Gradient Boosting Classifier

Hyperparameters

Click to expand
Hyperparameter Value
ccp_alpha 0.0
criterion friedman_mse
init
learning_rate 0.1
loss log_loss
max_depth 5
max_features
max_leaf_nodes
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
n_estimators 100
n_iter_no_change
random_state 42
subsample 1.0
tol 0.0001
validation_fraction 0.1
verbose 0
warm_start False

How to Get Started with the Model

To use the model, you can load it using the LocusToGeneModel.load_from_hub method. This will return a LocusToGeneModel object that can be used to make predictions on a feature matrix. The model can then be used to make predictions using the predict method.

    More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
    

Citation

https://doi.org/10.1038/s41588-021-00945-5

License

MIT