--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: skops model_file: classifier.skops widget: - structuredData: distanceTssMean: - 0.9900000095367432 - 1.0 - 0.8871889114379883 distanceTssMinimum: - 0.9900000095367432 - 1.0 - 0.8871889114379883 eqtlColocClppMaximum: - 0.9971522092819214 - 0.47164207696914673 - 0.0 eqtlColocClppMaximumNeighborhood: - -4.0 - -2.024019956588745 - 0.0 eqtlColocLlrMaximum: - 0.0 - 0.0 - 0.0 eqtlColocLlrMaximumNeighborhood: - 0.0 - 0.0 - 0.0 pqtlColocClppMaximum: - 0.0 - 0.0 - 0.0 pqtlColocClppMaximumNeighborhood: - 0.0 - 0.0 - 0.0 pqtlColocLlrMaximum: - 0.0 - 0.0 - 0.0 pqtlColocLlrMaximumNeighborhood: - 0.0 - 0.0 - 0.0 sqtlColocClppMaximum: - 0.023741500452160835 - 0.0 - 0.0 sqtlColocClppMaximumNeighborhood: - -1.2454184293746948 - 0.0 - 0.0 sqtlColocLlrMaximum: - 0.0 - 0.0 - 0.0 sqtlColocLlrMaximumNeighborhood: - 0.0 - 0.0 - 0.0 studyLocusId: - 6277076726371454497 - 760060231087881159 - 4858236220158118465 tuqtlColocClppMaximum: - 0.1552392542362213 - 0.0 - 0.0 tuqtlColocClppMaximumNeighborhood: - -4.0 - 0.0 - 0.0 tuqtlColocLlrMaximum: - 0.0 - 0.0 - 0.0 tuqtlColocLlrMaximumNeighborhood: - 0.0 - 0.0 - 0.0 vepMaximum: - 0.015523924492299557 - 0.6600000262260437 - 0.0 vepMaximumNeighborhood: - 0.01767149195075035 - 0.6600000262260437 - 0.0 vepMean: - 0.015523924492299557 - 0.6600000262260437 - 0.0 vepMeanNeighborhood: - 0.0036685012746602297 - 0.6600000262260437 - 0.0 --- # Model description The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are: - Distance: (from credible set variants to gene) - Molecular QTL Colocalization - Chromatin Interaction: (e.g., promoter-capture Hi-C) - Variant Pathogenicity: (from VEP) More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/ ## Intended uses & limitations [More Information Needed] ## Training Procedure Gradient Boosting Classifier ### Hyperparameters
Click to expand | Hyperparameter | Value | |--------------------------|--------------| | ccp_alpha | 0.0 | | criterion | friedman_mse | | init | | | learning_rate | 0.1 | | loss | log_loss | | max_depth | 5 | | max_features | | | max_leaf_nodes | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_iter_no_change | | | random_state | 42 | | subsample | 1.0 | | tol | 0.0001 | | validation_fraction | 0.1 | | verbose | 0 | | warm_start | False |
# How to Get Started with the Model To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix. The model can then be used to make predictions using the `predict` method. More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/ # Citation https://doi.org/10.1038/s41588-021-00945-5 # License MIT