tinyllama-airoboros / README.md
winglian's picture
Update README.md
f881df8
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T
model-index:
  - name: airoboros-lora-out
    results: []
pipeline_tag: text-generation

Built with Axolotl

airoboros-lora-out

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T on the jondurbin/airoboros-3.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7230

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

https://wandb.ai/wing-lian/airoboros-tinyllama

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.999,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.9777 0.0 1 1.0628
0.6566 0.5 379 0.7230

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.0
  • Tokenizers 0.15.0

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Framework versions

  • PEFT 0.6.0