File size: 2,347 Bytes
e09c6a5 f881df8 e09c6a5 f881df8 e09c6a5 f881df8 e09c6a5 f881df8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T
model-index:
- name: airoboros-lora-out
results: []
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# airoboros-lora-out
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T) on the `jondurbin/airoboros-3.1` dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
https://wandb.ai/wing-lian/airoboros-tinyllama
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.999,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9777 | 0.0 | 1 | 1.0628 |
| 0.6566 | 0.5 | 379 | 0.7230 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.0
- Tokenizers 0.15.0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.6.0 |