|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
- mteb |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
model-index: |
|
- name: omarelshehy/Arabic-STS-Matryoshka-V2 |
|
results: |
|
- dataset: |
|
config: ar-ar |
|
name: MTEB STS17 (ar-ar) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: pearson |
|
value: 85.1977 |
|
- type: spearman |
|
value: 86.0559 |
|
- type: cosine_pearson |
|
value: 85.1977 |
|
- type: cosine_spearman |
|
value: 86.0559 |
|
- type: manhattan_pearson |
|
value: 83.01950000000001 |
|
- type: manhattan_spearman |
|
value: 85.28620000000001 |
|
- type: euclidean_pearson |
|
value: 83.1524 |
|
- type: euclidean_spearman |
|
value: 85.3787 |
|
- type: main_score |
|
value: 86.0559 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-ar |
|
name: MTEB STS17 (en-ar) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: pearson |
|
value: 16.234 |
|
- type: spearman |
|
value: 13.337499999999999 |
|
- type: cosine_pearson |
|
value: 16.234 |
|
- type: cosine_spearman |
|
value: 13.337499999999999 |
|
- type: manhattan_pearson |
|
value: 11.103200000000001 |
|
- type: manhattan_spearman |
|
value: 8.8513 |
|
- type: euclidean_pearson |
|
value: 10.7335 |
|
- type: euclidean_spearman |
|
value: 7.857 |
|
- type: main_score |
|
value: 13.337499999999999 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar |
|
name: MTEB STS22 (ar) |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: pearson |
|
value: 49.8116 |
|
- type: spearman |
|
value: 58.7217 |
|
- type: cosine_pearson |
|
value: 49.8116 |
|
- type: cosine_spearman |
|
value: 58.7217 |
|
- type: manhattan_pearson |
|
value: 55.281499999999994 |
|
- type: manhattan_spearman |
|
value: 58.658 |
|
- type: euclidean_pearson |
|
value: 54.600300000000004 |
|
- type: euclidean_spearman |
|
value: 58.59029999999999 |
|
- type: main_score |
|
value: 58.7217 |
|
task: |
|
type: STS |
|
--- |
|
|
|
# SentenceTransformer based on aubmindlab/bert-base-arabertv02 |
|
|
|
🚀 🚀 This is **Arabic only** [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for **semantic textual similarity**, **semantic search**, **clustering**, and more. |
|
|
|
# Matryoshka Embeddings 🪆 |
|
|
|
This model supports Matryoshka embeddings, allowing you to truncate embeddings into smaller sizes to optimize performance and memory usage, based on your task requirements. Available truncation sizes include: **768**, **512**, **256**, **128**, and **64** |
|
|
|
You can select the appropriate embedding size for your use case, ensuring flexibility in resource management. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02) <!-- at revision 016fb9d6768f522a59c6e0d2d5d5d43a4e1bff60 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("omarelshehy/Arabic-STS-Matryoshka-V2") |
|
# Run inference |
|
sentences = [ |
|
'أحب قراءة الكتب في أوقات فراغي.', |
|
'أستمتع بقراءة القصص في المساء قبل النوم.', |
|
'القراءة تعزز معرفتي وتفتح أمامي آفاق جديدة.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
# 📊 Evaluation (Performance vs Embedding size) |
|
|
|
I evaluated this model on the MTEB STS17 for arabic for different Embedding sizes 🪆 |
|
|
|
The results are plotted below: |
|
|
|
![Plot](https://huggingface.co./omarelshehy/Arabic-STS-Matryoshka-V2/resolve/main/sts_matryoshka_v2_eval.png) |
|
|
|
as seen from the plot, only very small degradation of performance happens across smaller matryoshka embedding sizes. |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |