SentenceTransformer based on aubmindlab/bert-base-arabertv02
π π This is Arabic only sentence-transformers model finetuned from aubmindlab/bert-base-arabertv02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, clustering, and more.
Matryoshka Embeddings πͺ
This model supports Matryoshka embeddings, allowing you to truncate embeddings into smaller sizes to optimize performance and memory usage, based on your task requirements. Available truncation sizes include: 768, 512, 256, 128, and 64
You can select the appropriate embedding size for your use case, ensuring flexibility in resource management.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: aubmindlab/bert-base-arabertv02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("omarelshehy/Arabic-STS-Matryoshka-V2")
# Run inference
sentences = [
'Ψ£ΨΨ¨ ΩΨ±Ψ§Ψ‘Ψ© Ψ§ΩΩΨͺΨ¨ ΩΩ Ψ£ΩΩΨ§Ψͺ ΩΨ±Ψ§ΨΊΩ.',
'Ψ£Ψ³ΨͺΩ
ΨͺΨΉ Ψ¨ΩΨ±Ψ§Ψ‘Ψ© Ψ§ΩΩΨ΅Ψ΅ ΩΩ Ψ§ΩΩ
Ψ³Ψ§Ψ‘ ΩΨ¨Ω Ψ§ΩΩΩΩ
.',
'Ψ§ΩΩΨ±Ψ§Ψ‘Ψ© ΨͺΨΉΨ²Ψ² Ω
ΨΉΨ±ΩΨͺΩ ΩΨͺΩΨͺΨ Ψ£Ω
Ψ§Ω
Ω Ψ’ΩΨ§Ω Ψ¬Ψ―ΩΨ―Ψ©.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
π Evaluation (Performance vs Embedding size)
I evaluated this model on the MTEB STS17 for arabic for different Embedding sizes πͺ
The results are plotted below:
as seen from the plot, only very small degradation of performance happens across smaller matryoshka embedding sizes.
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 131
Model tree for omarelshehy/Arabic-STS-Matryoshka-V2
Base model
aubmindlab/bert-base-arabertv02Collection including omarelshehy/Arabic-STS-Matryoshka-V2
Evaluation results
- pearson on MTEB STS17 (ar-ar)test set self-reported85.198
- spearman on MTEB STS17 (ar-ar)test set self-reported86.056
- cosine_pearson on MTEB STS17 (ar-ar)test set self-reported85.198
- cosine_spearman on MTEB STS17 (ar-ar)test set self-reported86.056
- manhattan_pearson on MTEB STS17 (ar-ar)test set self-reported83.020
- manhattan_spearman on MTEB STS17 (ar-ar)test set self-reported85.286
- euclidean_pearson on MTEB STS17 (ar-ar)test set self-reported83.152
- euclidean_spearman on MTEB STS17 (ar-ar)test set self-reported85.379
- main_score on MTEB STS17 (ar-ar)test set self-reported86.056
- pearson on MTEB STS17 (en-ar)test set self-reported16.234