metadata
license: mit
base_model: facebook/esm2_t12_35M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: esm2_t12_35M_qlora_glycosylation_sites_2024-02-14_21-47-37
results: []
esm2_t12_35M_qlora_glycosylation_sites_2024-02-14_21-47-37
This model is a fine-tuned version of facebook/esm2_t12_35M_UR50D on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0108
- Accuracy: 0.9990
- Precision: 0.3291
- Recall: 0.9951
- F1: 0.4946
- Auc: 0.9970
- Mcc: 0.5720
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003701568055793089
- train_batch_size: 36
- eval_batch_size: 36
- seed: 8893
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | Mcc |
---|---|---|---|---|---|---|---|---|---|
0.0125 | 1.0 | 16521 | 0.0108 | 0.9990 | 0.3291 | 0.9951 | 0.4946 | 0.9970 | 0.5720 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1