--- license: mit base_model: facebook/esm2_t12_35M_UR50D tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: esm2_t12_35M_qlora_glycosylation_sites_2024-02-14_21-47-37 results: [] --- # esm2_t12_35M_qlora_glycosylation_sites_2024-02-14_21-47-37 This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co./facebook/esm2_t12_35M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0108 - Accuracy: 0.9990 - Precision: 0.3291 - Recall: 0.9951 - F1: 0.4946 - Auc: 0.9970 - Mcc: 0.5720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003701568055793089 - train_batch_size: 36 - eval_batch_size: 36 - seed: 8893 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | Mcc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:------:| | 0.0125 | 1.0 | 16521 | 0.0108 | 0.9990 | 0.3291 | 0.9951 | 0.4946 | 0.9970 | 0.5720 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1