whisper-medium-2-F / README.md
nicolarsen's picture
End of training
d3a1d22 verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - common_voice_14_0
metrics:
  - wer
model-index:
  - name: Whisper da-nst
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_14_0
          type: common_voice_14_0
          config: da
          split: test
          args: da
        metrics:
          - name: Wer
            type: wer
            value: 35.3093792833366

Whisper da-nst

This model is a fine-tuned version of openai/whisper-medium on the common_voice_14_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7234
  • Wer: 35.3094

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0133 4.04 1000 0.6362 48.9279
0.0025 9.04 2000 0.6635 37.4731
0.0001 14.03 3000 0.6959 34.1296
0.0001 19.03 4000 0.7166 35.1821
0.0 24.03 5000 0.7234 35.3094

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1