--- license: apache-2.0 base_model: openai/whisper-medium tags: - whisper-event - generated_from_trainer datasets: - common_voice_14_0 metrics: - wer model-index: - name: Whisper da-nst results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_14_0 type: common_voice_14_0 config: da split: test args: da metrics: - name: Wer type: wer value: 35.3093792833366 --- # Whisper da-nst This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the common_voice_14_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7234 - Wer: 35.3094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0133 | 4.04 | 1000 | 0.6362 | 48.9279 | | 0.0025 | 9.04 | 2000 | 0.6635 | 37.4731 | | 0.0001 | 14.03 | 3000 | 0.6959 | 34.1296 | | 0.0001 | 19.03 | 4000 | 0.7166 | 35.1821 | | 0.0 | 24.03 | 5000 | 0.7234 | 35.3094 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1