|
--- |
|
tags: |
|
- vllm |
|
- sparsity |
|
pipeline_tag: text-generation |
|
license: llama3.1 |
|
base_model: neuralmagic/Sparse-Llama-3.1-8B-2of4 |
|
datasets: |
|
- HuggingFaceH4/ultrachat_200k |
|
language: |
|
- en |
|
--- |
|
|
|
# Sparse-Llama-3.1-8B-ultrachat_200k-2of4 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Llama-3.1-8B |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Sparsity:** 2:4 |
|
- **Release Date:** 11/21/2024 |
|
- **Version:** 1.0 |
|
- **License(s):** [llama3.1](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) |
|
- **Model Developers:** Neural Magic |
|
|
|
This is a multi-turn conversational AI model obtained by fine-tuning the 2:4 sparse [Sparse-Llama-3.1-8B-2of4](https://huggingface.co./neuralmagic/Sparse-Llama-3.1-8B-2of4) on the [ultrachat_200k](https://huggingface.co./datasets/HuggingFaceH4/ultrachat_200k) dataset. |
|
On the [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) benchmark (version 1), it achieves a score of 61.1, compared to 62.0 for the fine-tuned dense model [Llama-3.1-8B-ultrachat_200k](https://huggingface.co./neuralmagic/Llama-3.1-8B-ultrachat_200k) — demonstrating a **98.5% accuracy recovery**. |
|
|
|
|
|
### Model Optimizations |
|
|
|
This inherits the optimizations from its parent, [Sparse-Llama-3.1-8B-2of4](https://huggingface.co./neuralmagic/Sparse-Llama-3.1-8B-2of4). |
|
Namely, all linear operators within transformer blocks were pruned to the 2:4 sparsity pattern: in each group of four weights, two are retained while two are pruned. |
|
|
|
|
|
## Deployment with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend. vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
|
|
## Evaluation |
|
|
|
This model was evaluated on Neural Magic's fork of [AlpacaEval](https://github.com/neuralmagic/alpaca_eval) benchmark. |
|
We adopt the same setup as in [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594), using version 1 of the benchmark and [Llama-2-70b-chat](https://huggingface.co./meta-llama/Llama-2-70b-chat-hf) as the annotator. |
|
|
|
### Accuracy |
|
#### AlpacaEval Benchmark |
|
<table> |
|
<tr> |
|
<td><strong>Metric</strong></td> |
|
<td style="text-align: center"><strong>Llama-3.1-8B-ultrachat_200k</strong></td> |
|
<td style="text-align: center"><strong>Sparse-Llama-3.1-8B-ultrachat_200k-2of4</strong></td> |
|
</tr> |
|
<tr> |
|
<td>Win rate</td> |
|
<td style="text-align: center">62.0</td> |
|
<td style="text-align: center">61.1</td> |
|
</tr> |
|
</table> |