File size: 2,585 Bytes
0dfc961 370cd1c 0dfc961 448478a 0dfc961 370cd1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
tags:
- vllm
- sparsity
pipeline_tag: text-generation
license: llama3.1
base_model: neuralmagic/Sparse-Llama-3.1-8B-2of4
datasets:
- HuggingFaceH4/ultrachat_200k
language:
- en
---
# Sparse-Llama-3.1-8B-ultrachat_200k-2of4
## Model Overview
- **Model Architecture:** Llama-3.1-8B
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Sparsity:** 2:4
- **Release Date:** 11/21/2024
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** Neural Magic
This is a multi-turn conversational AI model obtained by fine-tuning the 2:4 sparse [Sparse-Llama-3.1-8B-2of4](https://huggingface.co./neuralmagic/Sparse-Llama-3.1-8B-2of4) on the [ultrachat_200k](https://huggingface.co./datasets/HuggingFaceH4/ultrachat_200k) dataset.
On the [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) benchmark (version 1), it achieves a score of 61.1, compared to 62.0 for the fine-tuned dense model [Llama-3.1-8B-ultrachat_200k](https://huggingface.co./neuralmagic/Llama-3.1-8B-ultrachat_200k) — demonstrating a **98.5% accuracy recovery**.
### Model Optimizations
This inherits the optimizations from its parent, [Sparse-Llama-3.1-8B-2of4](https://huggingface.co./neuralmagic/Sparse-Llama-3.1-8B-2of4).
Namely, all linear operators within transformer blocks were pruned to the 2:4 sparsity pattern: in each group of four weights, two are retained while two are pruned.
## Deployment with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend. vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Evaluation
This model was evaluated on Neural Magic's fork of [AlpacaEval](https://github.com/neuralmagic/alpaca_eval) benchmark.
We adopt the same setup as in [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594), using version 1 of the benchmark and [Llama-2-70b-chat](https://huggingface.co./meta-llama/Llama-2-70b-chat-hf) as the annotator.
### Accuracy
#### AlpacaEval Benchmark
<table>
<tr>
<td><strong>Metric</strong></td>
<td style="text-align: center"><strong>Llama-3.1-8B-ultrachat_200k</strong></td>
<td style="text-align: center"><strong>Sparse-Llama-3.1-8B-ultrachat_200k-2of4</strong></td>
</tr>
<tr>
<td>Win rate</td>
<td style="text-align: center">62.0</td>
<td style="text-align: center">61.1</td>
</tr>
</table> |