File size: 2,585 Bytes
0dfc961
 
 
 
 
 
 
370cd1c
 
 
 
0dfc961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448478a
0dfc961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370cd1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
tags:
- vllm
- sparsity
pipeline_tag: text-generation
license: llama3.1
base_model: neuralmagic/Sparse-Llama-3.1-8B-2of4
datasets:
- HuggingFaceH4/ultrachat_200k
language:
- en
---

# Sparse-Llama-3.1-8B-ultrachat_200k-2of4

## Model Overview
- **Model Architecture:** Llama-3.1-8B
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Sparsity:** 2:4
- **Release Date:** 11/21/2024
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** Neural Magic

This is a multi-turn conversational AI model obtained by fine-tuning the 2:4 sparse [Sparse-Llama-3.1-8B-2of4](https://huggingface.co./neuralmagic/Sparse-Llama-3.1-8B-2of4) on the [ultrachat_200k](https://huggingface.co./datasets/HuggingFaceH4/ultrachat_200k) dataset.
On the [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) benchmark (version 1), it achieves a score of 61.1, compared to 62.0 for the fine-tuned dense model [Llama-3.1-8B-ultrachat_200k](https://huggingface.co./neuralmagic/Llama-3.1-8B-ultrachat_200k) — demonstrating a **98.5% accuracy recovery**.


### Model Optimizations

This inherits the optimizations from its parent, [Sparse-Llama-3.1-8B-2of4](https://huggingface.co./neuralmagic/Sparse-Llama-3.1-8B-2of4).
Namely, all linear operators within transformer blocks were pruned to the 2:4 sparsity pattern: in each group of four weights, two are retained while two are pruned.


## Deployment with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend. vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.


## Evaluation

This model was evaluated on Neural Magic's fork of [AlpacaEval](https://github.com/neuralmagic/alpaca_eval) benchmark.
We adopt the same setup as in [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594), using version 1 of the benchmark and [Llama-2-70b-chat](https://huggingface.co./meta-llama/Llama-2-70b-chat-hf) as the annotator.

### Accuracy
#### AlpacaEval Benchmark
<table>
    <tr>
        <td><strong>Metric</strong></td>
        <td style="text-align: center"><strong>Llama-3.1-8B-ultrachat_200k</strong></td>
        <td style="text-align: center"><strong>Sparse-Llama-3.1-8B-ultrachat_200k-2of4</strong></td>
    </tr>
    <tr>
        <td>Win rate</td>
        <td style="text-align: center">62.0</td>
        <td style="text-align: center">61.1</td>
    </tr>
</table>