nemik's picture
Model save
735c351 verified
|
raw
history blame
3.73 kB
metadata
library_name: transformers
license: other
base_model: apple/mobilevit-xx-small
tags:
  - generated_from_trainer
datasets:
  - webdataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: frost-mobile-apple__mobilevit-xx-small-v2024-10-22
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9497777777777778
          - name: F1
            type: f1
            value: 0.8754134509371555
          - name: Precision
            type: precision
            value: 0.8744493392070485
          - name: Recall
            type: recall
            value: 0.8763796909492274

frost-mobile-apple__mobilevit-xx-small-v2024-10-22

This model is a fine-tuned version of apple/mobilevit-xx-small on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1343
  • Accuracy: 0.9498
  • F1: 0.8754
  • Precision: 0.8744
  • Recall: 0.8764

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1927 1.7544 100 0.1470 0.9422 0.8565 0.8565 0.8565
0.1601 3.5088 200 0.1499 0.9444 0.8616 0.8644 0.8587
0.1544 5.2632 300 0.1536 0.9391 0.8493 0.8465 0.8521
0.207 7.0175 400 0.1374 0.9436 0.8575 0.8721 0.8433
0.1709 8.7719 500 0.1443 0.9431 0.8587 0.8587 0.8587
0.1548 10.5263 600 0.1572 0.9387 0.8490 0.8416 0.8565
0.1802 12.2807 700 0.1436 0.9458 0.8656 0.8637 0.8675
0.1455 14.0351 800 0.1442 0.9467 0.8667 0.8725 0.8609
0.1514 15.7895 900 0.1500 0.9422 0.8571 0.8534 0.8609
0.1368 17.5439 1000 0.1391 0.9489 0.8718 0.8806 0.8631
0.1515 19.2982 1100 0.1370 0.9476 0.8700 0.8681 0.8720
0.1372 21.0526 1200 0.1393 0.9458 0.8644 0.8702 0.8587
0.1397 22.8070 1300 0.1359 0.9498 0.8746 0.8795 0.8698
0.1398 24.5614 1400 0.1352 0.9489 0.8740 0.8674 0.8808
0.1276 26.3158 1500 0.1381 0.9476 0.8700 0.8681 0.8720
0.1519 28.0702 1600 0.1380 0.9462 0.8666 0.8656 0.8675
0.1479 29.8246 1700 0.1343 0.9498 0.8754 0.8744 0.8764

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1