File size: 3,730 Bytes
9eea73e
 
735c351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eea73e
 
735c351
 
9eea73e
735c351
9eea73e
735c351
 
 
 
 
 
 
9eea73e
735c351
9eea73e
735c351
9eea73e
735c351
9eea73e
735c351
9eea73e
735c351
9eea73e
735c351
9eea73e
735c351
9eea73e
735c351
9eea73e
735c351
 
 
 
 
 
 
 
 
 
9eea73e
735c351
9eea73e
735c351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eea73e
 
735c351
9eea73e
735c351
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: other
base_model: apple/mobilevit-xx-small
tags:
- generated_from_trainer
datasets:
- webdataset
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: frost-mobile-apple__mobilevit-xx-small-v2024-10-22
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: webdataset
      type: webdataset
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9497777777777778
    - name: F1
      type: f1
      value: 0.8754134509371555
    - name: Precision
      type: precision
      value: 0.8744493392070485
    - name: Recall
      type: recall
      value: 0.8763796909492274
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# frost-mobile-apple__mobilevit-xx-small-v2024-10-22

This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co./apple/mobilevit-xx-small) on the webdataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1343
- Accuracy: 0.9498
- F1: 0.8754
- Precision: 0.8744
- Recall: 0.8764

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.1927        | 1.7544  | 100  | 0.1470          | 0.9422   | 0.8565 | 0.8565    | 0.8565 |
| 0.1601        | 3.5088  | 200  | 0.1499          | 0.9444   | 0.8616 | 0.8644    | 0.8587 |
| 0.1544        | 5.2632  | 300  | 0.1536          | 0.9391   | 0.8493 | 0.8465    | 0.8521 |
| 0.207         | 7.0175  | 400  | 0.1374          | 0.9436   | 0.8575 | 0.8721    | 0.8433 |
| 0.1709        | 8.7719  | 500  | 0.1443          | 0.9431   | 0.8587 | 0.8587    | 0.8587 |
| 0.1548        | 10.5263 | 600  | 0.1572          | 0.9387   | 0.8490 | 0.8416    | 0.8565 |
| 0.1802        | 12.2807 | 700  | 0.1436          | 0.9458   | 0.8656 | 0.8637    | 0.8675 |
| 0.1455        | 14.0351 | 800  | 0.1442          | 0.9467   | 0.8667 | 0.8725    | 0.8609 |
| 0.1514        | 15.7895 | 900  | 0.1500          | 0.9422   | 0.8571 | 0.8534    | 0.8609 |
| 0.1368        | 17.5439 | 1000 | 0.1391          | 0.9489   | 0.8718 | 0.8806    | 0.8631 |
| 0.1515        | 19.2982 | 1100 | 0.1370          | 0.9476   | 0.8700 | 0.8681    | 0.8720 |
| 0.1372        | 21.0526 | 1200 | 0.1393          | 0.9458   | 0.8644 | 0.8702    | 0.8587 |
| 0.1397        | 22.8070 | 1300 | 0.1359          | 0.9498   | 0.8746 | 0.8795    | 0.8698 |
| 0.1398        | 24.5614 | 1400 | 0.1352          | 0.9489   | 0.8740 | 0.8674    | 0.8808 |
| 0.1276        | 26.3158 | 1500 | 0.1381          | 0.9476   | 0.8700 | 0.8681    | 0.8720 |
| 0.1519        | 28.0702 | 1600 | 0.1380          | 0.9462   | 0.8666 | 0.8656    | 0.8675 |
| 0.1479        | 29.8246 | 1700 | 0.1343          | 0.9498   | 0.8754 | 0.8744    | 0.8764 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1