|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen2.5-7B-Instruct |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- medalpaca/medical_meadow_medqa |
|
model-index: |
|
- name: lora-qwen-25-7b-instruct |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.6.0` |
|
```yaml |
|
base_model: Qwen/Qwen2.5-7B-Instruct |
|
trust_remote_code: true |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: |
|
load_in_4bit: |
|
strict: false |
|
|
|
datasets: |
|
- path: medalpaca/medical_meadow_medqa |
|
type: alpaca |
|
dataset_prepared_path: |
|
val_set_size: 0.1 |
|
output_dir: ./lora-qwen25 |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
|
|
adapter: lora |
|
lora_r: 256 |
|
lora_alpha: 128 |
|
lora_dropout: 0.05 |
|
#lora_target_modules: |
|
# - q_proj |
|
# - v_proj |
|
# - k_proj |
|
# - o_proj |
|
# - gate_proj |
|
# - down_proj |
|
# - up_proj |
|
lora_target_linear: true |
|
|
|
wandb_project: lora-qwen-25-7b-instruct |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 1 |
|
num_epochs: 3 |
|
optimizer: adamw_torch |
|
lr_scheduler: cosine |
|
learning_rate: 0.00001 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
|
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: |
|
eval_steps: |
|
save_steps: |
|
|
|
evals_per_epoch: 16 |
|
saves_per_epoch: 2 |
|
|
|
debug: |
|
deepspeed: deepspeed_configs/zero2.json |
|
weight_decay: |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
|
|
hub_model_id: neginashz/lora-qwen-25-7b-instruct |
|
hub_strategy: |
|
early_stopping_patience: |
|
|
|
resume_from_checkpoint: |
|
auto_resume_from_checkpoints: true |
|
|
|
|
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# lora-qwen-25-7b-instruct |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co./Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1181 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- total_train_batch_size: 4 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 7 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.774 | 0.0741 | 6 | 2.5571 | |
|
| 1.4649 | 0.1481 | 12 | 1.3144 | |
|
| 0.649 | 0.2222 | 18 | 0.4603 | |
|
| 0.1557 | 0.2963 | 24 | 0.1620 | |
|
| 0.1792 | 0.3704 | 30 | 0.1539 | |
|
| 0.1432 | 0.4444 | 36 | 0.1422 | |
|
| 0.1393 | 0.5185 | 42 | 0.1385 | |
|
| 0.1137 | 0.5926 | 48 | 0.1340 | |
|
| 0.1246 | 0.6667 | 54 | 0.1317 | |
|
| 0.1235 | 0.7407 | 60 | 0.1313 | |
|
| 0.123 | 0.8148 | 66 | 0.1293 | |
|
| 0.1413 | 0.8889 | 72 | 0.1277 | |
|
| 0.1338 | 0.9630 | 78 | 0.1268 | |
|
| 0.1093 | 1.0247 | 84 | 0.1263 | |
|
| 0.1442 | 1.0988 | 90 | 0.1265 | |
|
| 0.1127 | 1.1728 | 96 | 0.1244 | |
|
| 0.137 | 1.2469 | 102 | 0.1231 | |
|
| 0.1098 | 1.3210 | 108 | 0.1224 | |
|
| 0.1276 | 1.3951 | 114 | 0.1223 | |
|
| 0.102 | 1.4691 | 120 | 0.1215 | |
|
| 0.1208 | 1.5432 | 126 | 0.1217 | |
|
| 0.1143 | 1.6173 | 132 | 0.1211 | |
|
| 0.1315 | 1.6914 | 138 | 0.1204 | |
|
| 0.1166 | 1.7654 | 144 | 0.1200 | |
|
| 0.1055 | 1.8395 | 150 | 0.1200 | |
|
| 0.1235 | 1.9136 | 156 | 0.1194 | |
|
| 0.12 | 1.9877 | 162 | 0.1193 | |
|
| 0.0982 | 2.0494 | 168 | 0.1193 | |
|
| 0.1129 | 2.1235 | 174 | 0.1188 | |
|
| 0.1094 | 2.1975 | 180 | 0.1190 | |
|
| 0.1216 | 2.2716 | 186 | 0.1191 | |
|
| 0.1387 | 2.3457 | 192 | 0.1187 | |
|
| 0.1001 | 2.4198 | 198 | 0.1184 | |
|
| 0.1031 | 2.4938 | 204 | 0.1185 | |
|
| 0.0818 | 2.5679 | 210 | 0.1183 | |
|
| 0.126 | 2.6420 | 216 | 0.1185 | |
|
| 0.124 | 2.7160 | 222 | 0.1183 | |
|
| 0.1193 | 2.7901 | 228 | 0.1184 | |
|
| 0.1082 | 2.8642 | 234 | 0.1183 | |
|
| 0.1181 | 2.9383 | 240 | 0.1181 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.21.0 |