File size: 5,293 Bytes
84aa516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- medalpaca/medical_meadow_medqa
model-index:
- name: lora-qwen-25-7b-instruct
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-7B-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: 
load_in_4bit:
strict: false

datasets:
  - path: medalpaca/medical_meadow_medqa
    type: alpaca
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./lora-qwen25

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true


adapter: lora
lora_r: 256
lora_alpha: 128
lora_dropout: 0.05
#lora_target_modules:
#  - q_proj
#  - v_proj
#  - k_proj
#  - o_proj
#  - gate_proj
#  - down_proj
#  - up_proj
lora_target_linear: true

wandb_project: lora-qwen-25-7b-instruct
wandb_entity: 
wandb_watch:
wandb_name: 
wandb_log_model: 

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
  
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps:
eval_steps: 
save_steps:

evals_per_epoch: 16
saves_per_epoch: 2

debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay:
fsdp:
fsdp_config:
special_tokens:

hub_model_id: neginashz/lora-qwen-25-7b-instruct
hub_strategy: 
early_stopping_patience:

resume_from_checkpoint:
auto_resume_from_checkpoints: true



```

</details><br>

# lora-qwen-25-7b-instruct

This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co./Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1181

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 7
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.774         | 0.0741 | 6    | 2.5571          |
| 1.4649        | 0.1481 | 12   | 1.3144          |
| 0.649         | 0.2222 | 18   | 0.4603          |
| 0.1557        | 0.2963 | 24   | 0.1620          |
| 0.1792        | 0.3704 | 30   | 0.1539          |
| 0.1432        | 0.4444 | 36   | 0.1422          |
| 0.1393        | 0.5185 | 42   | 0.1385          |
| 0.1137        | 0.5926 | 48   | 0.1340          |
| 0.1246        | 0.6667 | 54   | 0.1317          |
| 0.1235        | 0.7407 | 60   | 0.1313          |
| 0.123         | 0.8148 | 66   | 0.1293          |
| 0.1413        | 0.8889 | 72   | 0.1277          |
| 0.1338        | 0.9630 | 78   | 0.1268          |
| 0.1093        | 1.0247 | 84   | 0.1263          |
| 0.1442        | 1.0988 | 90   | 0.1265          |
| 0.1127        | 1.1728 | 96   | 0.1244          |
| 0.137         | 1.2469 | 102  | 0.1231          |
| 0.1098        | 1.3210 | 108  | 0.1224          |
| 0.1276        | 1.3951 | 114  | 0.1223          |
| 0.102         | 1.4691 | 120  | 0.1215          |
| 0.1208        | 1.5432 | 126  | 0.1217          |
| 0.1143        | 1.6173 | 132  | 0.1211          |
| 0.1315        | 1.6914 | 138  | 0.1204          |
| 0.1166        | 1.7654 | 144  | 0.1200          |
| 0.1055        | 1.8395 | 150  | 0.1200          |
| 0.1235        | 1.9136 | 156  | 0.1194          |
| 0.12          | 1.9877 | 162  | 0.1193          |
| 0.0982        | 2.0494 | 168  | 0.1193          |
| 0.1129        | 2.1235 | 174  | 0.1188          |
| 0.1094        | 2.1975 | 180  | 0.1190          |
| 0.1216        | 2.2716 | 186  | 0.1191          |
| 0.1387        | 2.3457 | 192  | 0.1187          |
| 0.1001        | 2.4198 | 198  | 0.1184          |
| 0.1031        | 2.4938 | 204  | 0.1185          |
| 0.0818        | 2.5679 | 210  | 0.1183          |
| 0.126         | 2.6420 | 216  | 0.1185          |
| 0.124         | 2.7160 | 222  | 0.1183          |
| 0.1193        | 2.7901 | 228  | 0.1184          |
| 0.1082        | 2.8642 | 234  | 0.1183          |
| 0.1181        | 2.9383 | 240  | 0.1181          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0