|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-finetuned-scope-summarization |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-finetuned-scope-summarization |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2068 |
|
- Rouge1: 21.1277 |
|
- Rouge2: 12.8385 |
|
- Rougel: 19.2508 |
|
- Rougelsum: 19.1904 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 0.7131 | 1.0 | 40 | 0.3103 | 13.5236 | 5.6576 | 11.5554 | 11.5235 | |
|
| 0.3577 | 2.0 | 80 | 0.2444 | 20.2029 | 12.8573 | 18.8596 | 18.7919 | |
|
| 0.3116 | 3.0 | 120 | 0.2315 | 20.1102 | 12.5261 | 18.5794 | 18.6565 | |
|
| 0.3041 | 4.0 | 160 | 0.2235 | 19.7317 | 12.0446 | 18.1138 | 18.1158 | |
|
| 0.2856 | 5.0 | 200 | 0.2166 | 19.9465 | 12.3127 | 18.2483 | 18.1644 | |
|
| 0.2972 | 6.0 | 240 | 0.2128 | 20.5461 | 12.4766 | 18.5225 | 18.5724 | |
|
| 0.2787 | 7.0 | 280 | 0.2101 | 20.383 | 12.8677 | 19.021 | 18.9993 | |
|
| 0.2837 | 8.0 | 320 | 0.2087 | 21.0603 | 12.7582 | 19.2214 | 19.1966 | |
|
| 0.2803 | 9.0 | 360 | 0.2074 | 20.9823 | 12.7617 | 19.1207 | 19.0656 | |
|
| 0.2696 | 10.0 | 400 | 0.2068 | 21.1277 | 12.8385 | 19.2508 | 19.1904 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|