File size: 2,398 Bytes
254a95c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-base-finetuned-scope-summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-finetuned-scope-summarization

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2068
- Rouge1: 21.1277
- Rouge2: 12.8385
- Rougel: 19.2508
- Rougelsum: 19.1904

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.7131        | 1.0   | 40   | 0.3103          | 13.5236 | 5.6576  | 11.5554 | 11.5235   |
| 0.3577        | 2.0   | 80   | 0.2444          | 20.2029 | 12.8573 | 18.8596 | 18.7919   |
| 0.3116        | 3.0   | 120  | 0.2315          | 20.1102 | 12.5261 | 18.5794 | 18.6565   |
| 0.3041        | 4.0   | 160  | 0.2235          | 19.7317 | 12.0446 | 18.1138 | 18.1158   |
| 0.2856        | 5.0   | 200  | 0.2166          | 19.9465 | 12.3127 | 18.2483 | 18.1644   |
| 0.2972        | 6.0   | 240  | 0.2128          | 20.5461 | 12.4766 | 18.5225 | 18.5724   |
| 0.2787        | 7.0   | 280  | 0.2101          | 20.383  | 12.8677 | 19.021  | 18.9993   |
| 0.2837        | 8.0   | 320  | 0.2087          | 21.0603 | 12.7582 | 19.2214 | 19.1966   |
| 0.2803        | 9.0   | 360  | 0.2074          | 20.9823 | 12.7617 | 19.1207 | 19.0656   |
| 0.2696        | 10.0  | 400  | 0.2068          | 21.1277 | 12.8385 | 19.2508 | 19.1904   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1