|
#@title |
|
--- |
|
tags: |
|
- bipedal |
|
- walker |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
--- |
|
# PPO BipedalWalker v3 ๐ค๐ถ๐ผ |
|
|
|
This is a pre-trained model of a PPO agent playing BipedalWalker-v3 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. |
|
|
|
<video loop="" autoplay="" controls="" src="https://huggingface.co./mrm8488/ppo-BipedalWalker-v3/resolve/main/output.mp4"></video> |
|
|
|
### Usage (with Stable-baselines3) |
|
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: |
|
|
|
``` |
|
pip install stable-baselines3 |
|
pip install huggingface_sb3 |
|
``` |
|
|
|
Then, you can use the model like this: |
|
|
|
```python |
|
import gym |
|
|
|
from huggingface_sb3 import load_from_hub |
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
|
|
# Retrieve the model from the hub |
|
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) |
|
## filename = name of the model zip file from the repository |
|
checkpoint = load_from_hub(repo_id="mrm8488/ppo-BipedalWalker-v3", filename="bipedalwalker-v3.zip") |
|
model = PPO.load(checkpoint) |
|
|
|
# Evaluate the agent |
|
eval_env = gym.make('{environment}') |
|
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) |
|
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") |
|
|
|
# Watch the agent play |
|
obs = env.reset() |
|
for i in range(1000): |
|
action, _state = model.predict(obs) |
|
obs, reward, done, info = env.step(action) |
|
env.render() |
|
if done: |
|
obs = env.reset() |
|
env.close() |
|
``` |
|
|
|
### Evaluation Results |
|
Mean_reward: 213.55 +/- 113.82 |
|
|