YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/model-cards#model-card-metadata)
#@title
tags: - bipedal - walker - deep-reinforcement-learning - reinforcement-learning - stable-baselines3
PPO BipedalWalker v3 π€πΆπΌ
This is a pre-trained model of a PPO agent playing BipedalWalker-v3 using the stable-baselines3 library.
Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
pip install stable-baselines3
pip install huggingface_sb3
Then, you can use the model like this:
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="mrm8488/ppo-BipedalWalker-v3", filename="bipedalwalker-v3.zip")
model = PPO.load(checkpoint)
# Evaluate the agent
eval_env = gym.make('{environment}')
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
# Watch the agent play
obs = env.reset()
for i in range(1000):
action, _state = model.predict(obs)
obs, reward, done, info = env.step(action)
env.render()
if done:
obs = env.reset()
env.close()
Evaluation Results
Mean_reward: 213.55 +/- 113.82