moritzglnr's picture
Add new SentenceTransformer model.
2bb2883 verified
|
raw
history blame
28.1 kB
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: R&D expense increased by $304 million, or 14.9%, led by Intelligent
Edge, HPC & AI and Storage in fiscal 2023.
sentences:
- What was the growth rate of Visa Inc.'s overall total nominal volume from 2021
to 2022?
- How much did Hewlett Packard Enterprise's R&D expenses increase in fiscal 2023?
- What is the purpose of the Global Day of Joy at Hasbro?
- source_sentence: In 2022 and continuing into 2023, the Russia-Ukraine conflict was
a catalyst for an energy crisis in Europe. Government interventions related to
the energy crisis resulting from the Russia-Ukraine conflict, such as the Market
Correction Mechanism (price cap), or interventions that may be proposed in the
future related to the Russia-Ukraine conflict or the conflict in Israel and Gaza
could also have a negative impact on our business.
sentences:
- What are Garmin's core strategies for reducing its environmental impact?
- What are the potential consequences of the Russia-Ukraine conflict on a company's
business?
- What factors influence HP's critical accounting estimates?
- source_sentence: The increase in other income, net was primarily due to an increase
in interest income as a result of higher cash balances and higher interest rates.
sentences:
- What was the primary reason for the increase in other income, net during the noted
period?
- What led to the increase in room expenses at Las Vegas Sands Corp. in 2023?
- What was the provision for income taxes for the year ended June 30, 2023?
- source_sentence: When an investment declines below cost basis, management evaluates
whether the decline in fair value is other than temporary. If deemed other than
temporary, an impairment charge is recorded.
sentences:
- What are the requirements for Gilead's cell therapy products under the FDA's Risk
Evaluation and Mitigation Strategy program?
- What are the four focus areas declared by the company to strengthen their performance
going forward?
- What triggers the requirement for management to record an impairment charge for
investments?
- source_sentence: The total gross fair value of derivatives was listed as $422,232
million as per the latest financial data without adjustments for counterparty
netting or collateral.
sentences:
- What was the total gross fair value of derivatives as of December 2023 before
netting adjustments in the consolidated financial statements?
- How does the company handle the recording and disclosure of contingent liabilities?
- What is the significance of reporting financial results on a constant currency
basis?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7071428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7071428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7071428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8050065074948352
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7732902494331064
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.776990609765374
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8035496957871646
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7707964852607707
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7744696266512991
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6885714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8157142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6885714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27190476190476187
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.172
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6885714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8157142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.86
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7959304086509564
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7620759637188204
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7656989001700307
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7871428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8257142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8828571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2623809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16514285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08828571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7871428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8257142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8828571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7805054661054854
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7483526077097503
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7524860233992903
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.64
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7557142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7828571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8428571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.64
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25190476190476185
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15657142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08428571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.64
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7557142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7828571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8428571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7386047605712329
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7057772108843535
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7112870933540941
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
# Run inference
sentences = [
'The total gross fair value of derivatives was listed as $422,232 million as per the latest financial data without adjustments for counterparty netting or collateral.',
'What was the total gross fair value of derivatives as of December 2023 before netting adjustments in the consolidated financial statements?',
'How does the company handle the recording and disclosure of contingent liabilities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.7071 |
| cosine_accuracy@3 | 0.8214 |
| cosine_accuracy@5 | 0.8614 |
| cosine_accuracy@10 | 0.9043 |
| cosine_precision@1 | 0.7071 |
| cosine_precision@3 | 0.2738 |
| cosine_precision@5 | 0.1723 |
| cosine_precision@10 | 0.0904 |
| cosine_recall@1 | 0.7071 |
| cosine_recall@3 | 0.8214 |
| cosine_recall@5 | 0.8614 |
| cosine_recall@10 | 0.9043 |
| cosine_ndcg@10 | 0.805 |
| cosine_mrr@10 | 0.7733 |
| **cosine_map@100** | **0.777** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7014 |
| cosine_accuracy@3 | 0.8214 |
| cosine_accuracy@5 | 0.8657 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.7014 |
| cosine_precision@3 | 0.2738 |
| cosine_precision@5 | 0.1731 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.7014 |
| cosine_recall@3 | 0.8214 |
| cosine_recall@5 | 0.8657 |
| cosine_recall@10 | 0.9057 |
| cosine_ndcg@10 | 0.8035 |
| cosine_mrr@10 | 0.7708 |
| **cosine_map@100** | **0.7745** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6886 |
| cosine_accuracy@3 | 0.8157 |
| cosine_accuracy@5 | 0.86 |
| cosine_accuracy@10 | 0.9014 |
| cosine_precision@1 | 0.6886 |
| cosine_precision@3 | 0.2719 |
| cosine_precision@5 | 0.172 |
| cosine_precision@10 | 0.0901 |
| cosine_recall@1 | 0.6886 |
| cosine_recall@3 | 0.8157 |
| cosine_recall@5 | 0.86 |
| cosine_recall@10 | 0.9014 |
| cosine_ndcg@10 | 0.7959 |
| cosine_mrr@10 | 0.7621 |
| **cosine_map@100** | **0.7657** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6871 |
| cosine_accuracy@3 | 0.7871 |
| cosine_accuracy@5 | 0.8257 |
| cosine_accuracy@10 | 0.8829 |
| cosine_precision@1 | 0.6871 |
| cosine_precision@3 | 0.2624 |
| cosine_precision@5 | 0.1651 |
| cosine_precision@10 | 0.0883 |
| cosine_recall@1 | 0.6871 |
| cosine_recall@3 | 0.7871 |
| cosine_recall@5 | 0.8257 |
| cosine_recall@10 | 0.8829 |
| cosine_ndcg@10 | 0.7805 |
| cosine_mrr@10 | 0.7484 |
| **cosine_map@100** | **0.7525** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.64 |
| cosine_accuracy@3 | 0.7557 |
| cosine_accuracy@5 | 0.7829 |
| cosine_accuracy@10 | 0.8429 |
| cosine_precision@1 | 0.64 |
| cosine_precision@3 | 0.2519 |
| cosine_precision@5 | 0.1566 |
| cosine_precision@10 | 0.0843 |
| cosine_recall@1 | 0.64 |
| cosine_recall@3 | 0.7557 |
| cosine_recall@5 | 0.7829 |
| cosine_recall@10 | 0.8429 |
| cosine_ndcg@10 | 0.7386 |
| cosine_mrr@10 | 0.7058 |
| **cosine_map@100** | **0.7113** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 45.41 tokens</li><li>max: 371 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.32 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
| positive | anchor |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
| <code>The 2023 Form 10-K for Delta Air Lines, Inc. includes various types of financial statements such as consolidated balance sheets, consolidated statements of operations, comprehensive income, cash flows, and stockholders' equity.</code> | <code>What are the primary types of financial statements included in Delta Air Lines, Inc.'s 2023 Form 10-K?</code> |
| <code>Critical accounting estimates are those that involve a significant level of estimation uncertainty and have had or are reasonably likely to have a material impact on HP's financial condition or results of operations.</code> | <code>What factors influence HP's critical accounting estimates?</code> |
| <code>The requisite service period for both employee stock options and RSUs is generally four years from the grant date.</code> | <code>What is the recognition period for Etsy's stock options and RSUs granted to employees?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122 | 10 | 1.4747 | - | - | - | - | - |
| **0.9746** | **12** | **-** | **0.7525** | **0.7657** | **0.7745** | **0.7113** | **0.777** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.2
- PyTorch: 2.3.1
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->