metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
R&D expense increased by $304 million, or 14.9%, led by Intelligent Edge,
HPC & AI and Storage in fiscal 2023.
sentences:
- >-
What was the growth rate of Visa Inc.'s overall total nominal volume
from 2021 to 2022?
- >-
How much did Hewlett Packard Enterprise's R&D expenses increase in
fiscal 2023?
- What is the purpose of the Global Day of Joy at Hasbro?
- source_sentence: >-
In 2022 and continuing into 2023, the Russia-Ukraine conflict was a
catalyst for an energy crisis in Europe. Government interventions related
to the energy crisis resulting from the Russia-Ukraine conflict, such as
the Market Correction Mechanism (price cap), or interventions that may be
proposed in the future related to the Russia-Ukraine conflict or the
conflict in Israel and Gaza could also have a negative impact on our
business.
sentences:
- What are Garmin's core strategies for reducing its environmental impact?
- >-
What are the potential consequences of the Russia-Ukraine conflict on a
company's business?
- What factors influence HP's critical accounting estimates?
- source_sentence: >-
The increase in other income, net was primarily due to an increase in
interest income as a result of higher cash balances and higher interest
rates.
sentences:
- >-
What was the primary reason for the increase in other income, net during
the noted period?
- >-
What led to the increase in room expenses at Las Vegas Sands Corp. in
2023?
- >-
What was the provision for income taxes for the year ended June 30,
2023?
- source_sentence: >-
When an investment declines below cost basis, management evaluates whether
the decline in fair value is other than temporary. If deemed other than
temporary, an impairment charge is recorded.
sentences:
- >-
What are the requirements for Gilead's cell therapy products under the
FDA's Risk Evaluation and Mitigation Strategy program?
- >-
What are the four focus areas declared by the company to strengthen
their performance going forward?
- >-
What triggers the requirement for management to record an impairment
charge for investments?
- source_sentence: >-
The total gross fair value of derivatives was listed as $422,232 million
as per the latest financial data without adjustments for counterparty
netting or collateral.
sentences:
- >-
What was the total gross fair value of derivatives as of December 2023
before netting adjustments in the consolidated financial statements?
- >-
How does the company handle the recording and disclosure of contingent
liabilities?
- >-
What is the significance of reporting financial results on a constant
currency basis?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7071428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7071428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7071428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8050065074948352
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7732902494331064
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.776990609765374
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8035496957871646
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7707964852607707
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7744696266512991
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6885714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8157142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6885714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27190476190476187
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.172
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6885714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8157142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.86
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7959304086509564
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7620759637188204
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7656989001700307
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7871428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8257142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8828571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2623809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16514285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08828571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7871428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8257142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8828571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7805054661054854
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7483526077097503
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7524860233992903
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.64
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7557142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7828571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8428571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.64
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25190476190476185
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15657142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08428571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.64
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7557142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7828571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8428571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7386047605712329
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7057772108843535
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7112870933540941
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
sentences = [
'The total gross fair value of derivatives was listed as $422,232 million as per the latest financial data without adjustments for counterparty netting or collateral.',
'What was the total gross fair value of derivatives as of December 2023 before netting adjustments in the consolidated financial statements?',
'How does the company handle the recording and disclosure of contingent liabilities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7071 |
cosine_accuracy@3 |
0.8214 |
cosine_accuracy@5 |
0.8614 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.7071 |
cosine_precision@3 |
0.2738 |
cosine_precision@5 |
0.1723 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.7071 |
cosine_recall@3 |
0.8214 |
cosine_recall@5 |
0.8614 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.805 |
cosine_mrr@10 |
0.7733 |
cosine_map@100 |
0.777 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7014 |
cosine_accuracy@3 |
0.8214 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.9057 |
cosine_precision@1 |
0.7014 |
cosine_precision@3 |
0.2738 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.0906 |
cosine_recall@1 |
0.7014 |
cosine_recall@3 |
0.8214 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.9057 |
cosine_ndcg@10 |
0.8035 |
cosine_mrr@10 |
0.7708 |
cosine_map@100 |
0.7745 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6886 |
cosine_accuracy@3 |
0.8157 |
cosine_accuracy@5 |
0.86 |
cosine_accuracy@10 |
0.9014 |
cosine_precision@1 |
0.6886 |
cosine_precision@3 |
0.2719 |
cosine_precision@5 |
0.172 |
cosine_precision@10 |
0.0901 |
cosine_recall@1 |
0.6886 |
cosine_recall@3 |
0.8157 |
cosine_recall@5 |
0.86 |
cosine_recall@10 |
0.9014 |
cosine_ndcg@10 |
0.7959 |
cosine_mrr@10 |
0.7621 |
cosine_map@100 |
0.7657 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6871 |
cosine_accuracy@3 |
0.7871 |
cosine_accuracy@5 |
0.8257 |
cosine_accuracy@10 |
0.8829 |
cosine_precision@1 |
0.6871 |
cosine_precision@3 |
0.2624 |
cosine_precision@5 |
0.1651 |
cosine_precision@10 |
0.0883 |
cosine_recall@1 |
0.6871 |
cosine_recall@3 |
0.7871 |
cosine_recall@5 |
0.8257 |
cosine_recall@10 |
0.8829 |
cosine_ndcg@10 |
0.7805 |
cosine_mrr@10 |
0.7484 |
cosine_map@100 |
0.7525 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.64 |
cosine_accuracy@3 |
0.7557 |
cosine_accuracy@5 |
0.7829 |
cosine_accuracy@10 |
0.8429 |
cosine_precision@1 |
0.64 |
cosine_precision@3 |
0.2519 |
cosine_precision@5 |
0.1566 |
cosine_precision@10 |
0.0843 |
cosine_recall@1 |
0.64 |
cosine_recall@3 |
0.7557 |
cosine_recall@5 |
0.7829 |
cosine_recall@10 |
0.8429 |
cosine_ndcg@10 |
0.7386 |
cosine_mrr@10 |
0.7058 |
cosine_map@100 |
0.7113 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 45.41 tokens
- max: 371 tokens
|
- min: 2 tokens
- mean: 20.32 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
The 2023 Form 10-K for Delta Air Lines, Inc. includes various types of financial statements such as consolidated balance sheets, consolidated statements of operations, comprehensive income, cash flows, and stockholders' equity. |
What are the primary types of financial statements included in Delta Air Lines, Inc.'s 2023 Form 10-K? |
Critical accounting estimates are those that involve a significant level of estimation uncertainty and have had or are reasonably likely to have a material impact on HP's financial condition or results of operations. |
What factors influence HP's critical accounting estimates? |
The requisite service period for both employee stock options and RSUs is generally four years from the grant date. |
What is the recognition period for Etsy's stock options and RSUs granted to employees? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 1
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
tf32
: False
load_best_model_at_end
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.4747 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7525 |
0.7657 |
0.7745 |
0.7113 |
0.777 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.2
- PyTorch: 2.3.1
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}