mikr's picture
Librarian Bot: Add base_model information to model (#1)
eb98cda
metadata
language:
  - sk
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: Whisper Small Slovak
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: sk
          split: test
        metrics:
          - type: wer
            value: 33.817229890528324
            name: Wer

Whisper Small Slovak

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 sk dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6225
  • Wer: 33.8172

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0038 14.0 1000 0.5366 34.2575
0.0006 28.01 2000 0.5914 34.8881
0.0003 42.01 3000 0.6225 33.8172
0.0002 57.0 4000 0.6411 34.1385
0.0002 71.01 5000 0.6498 34.0195

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2