File size: 2,135 Bytes
f00e760 cb37c13 f00e760 54526b1 cb37c13 f00e760 cb37c13 f00e760 eb98cda f00e760 cb37c13 f00e760 eb98cda f00e760 bc37c85 cb37c13 eb98cda c522b54 f00e760 eb98cda cb37c13 eb98cda f00e760 cb37c13 f00e760 cb37c13 f00e760 cb37c13 f00e760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- sk
license: apache-2.0
tags:
- hf-asr-leaderboard
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Slovak
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: sk
split: test
metrics:
- type: wer
value: 33.817229890528324
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Slovak
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the mozilla-foundation/common_voice_11_0 sk dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6225
- Wer: 33.8172
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0038 | 14.0 | 1000 | 0.5366 | 34.2575 |
| 0.0006 | 28.01 | 2000 | 0.5914 | 34.8881 |
| 0.0003 | 42.01 | 3000 | 0.6225 | 33.8172 |
| 0.0002 | 57.0 | 4000 | 0.6411 | 34.1385 |
| 0.0002 | 71.01 | 5000 | 0.6498 | 34.0195 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|