metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_ner_model
results: []
my_ner_model
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2692
- Precision: 0.5427
- Recall: 0.3299
- F1: 0.4104
- Accuracy: 0.9440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.2727 | 0.6394 | 0.2678 | 0.3775 | 0.9402 |
No log | 2.0 | 426 | 0.2651 | 0.5677 | 0.3188 | 0.4083 | 0.9428 |
0.1748 | 3.0 | 639 | 0.2692 | 0.5427 | 0.3299 | 0.4104 | 0.9440 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1