--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_ner_model results: [] --- # my_ner_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2692 - Precision: 0.5427 - Recall: 0.3299 - F1: 0.4104 - Accuracy: 0.9440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2727 | 0.6394 | 0.2678 | 0.3775 | 0.9402 | | No log | 2.0 | 426 | 0.2651 | 0.5677 | 0.3188 | 0.4083 | 0.9428 | | 0.1748 | 3.0 | 639 | 0.2692 | 0.5427 | 0.3299 | 0.4104 | 0.9440 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu118 - Datasets 2.19.0 - Tokenizers 0.19.1