mhhmm's picture
Update README.md
044920b
|
raw
history blame
3.68 kB
metadata
license: llama2
library_name: peft
tags:
  - typescript
  - instruction-tuning
  - code-generation
  - lora
  - peft
base_model: codellama/CodeLlama-13b-hf
model-index:
  - name: lora-out
    results: []
datasets:
  - mhhmm/typescript-instruct-20k
language:
  - en
metrics:
  - code_eval
pipeline_tag: text-generation

Architecture

The Architecture

About

This model is a fine-tuned version of codellama/CodeLlama-13b-hf. It achieves the following results on the evaluation set:

  • Loss: 0.4268

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.7555 0.01 1 0.7062
0.7036 0.05 7 0.6673
0.5422 0.1 14 0.5152
0.5351 0.15 21 0.4866
0.495 0.2 28 0.4688
0.5651 0.25 35 0.4587
0.5146 0.3 42 0.4486
0.4955 0.35 49 0.4469
0.5117 0.4 56 0.4432
0.5245 0.45 63 0.4410
0.5003 0.5 70 0.4371
0.4502 0.55 77 0.4340
0.527 0.6 84 0.4315
0.48 0.65 91 0.4305
0.448 0.7 98 0.4289
0.5427 0.75 105 0.4289
0.4715 0.8 112 0.4279
0.5584 0.85 119 0.4276
0.4936 0.9 126 0.4267
0.4788 0.95 133 0.4268
0.476 1.0 140 0.4268

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
  • PEFT 0.6.0

Evaluation

I'm using MultiPL-E benchmark, the same as Code Llmama using in their paper

Modal Pass@k Estimate Num problems
Code LLama - Instruct 13B 1 39.0% 159
Our 13B 1 42.4% 159

How to reproduce my evaluation? Just run like the offical document of MultiPL-E: https://nuprl.github.io/MultiPL-E/tutorial.html, change the modal name by my model here: mhhmm/typescript-instruct-20k

This is the code that I ran with Google Colab (using A100 40GB, yes, it requires that much GPU RAM)

If you even have a stronger GPU, increase the --batch-size, or --completion-limit

!pip install --upgrade pip
!pip install aiohttp numpy tqdm pytest datasets torch transformers sentencepiece
!git clone https://github.com/nuprl/MultiPL-E
%cd MultiPL-E
!mkdir typescript
!python3 automodel.py --name mhhmm/typescript-instruct-20k-v2 --root-dataset humaneval --lang ts --temperature 0.2 --batch-size 10 --completion-limit 20 --output-dir-prefix typescript
%cd evaluation/src
!python3 main.py --dir ../../typescript --output-dir ../../typescript --recursive
!python3 pass_k.py ./typescript/*