|
import time, logging |
|
from datetime import datetime |
|
import threading, collections, queue, os, os.path |
|
import deepspeech |
|
import numpy as np |
|
import pyaudio |
|
import wave |
|
import webrtcvad |
|
from halo import Halo |
|
from scipy import signal |
|
|
|
logging.basicConfig(level=20) |
|
|
|
class Audio(object): |
|
"""Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from.""" |
|
|
|
FORMAT = pyaudio.paInt16 |
|
|
|
RATE_PROCESS = 16000 |
|
CHANNELS = 1 |
|
BLOCKS_PER_SECOND = 50 |
|
|
|
def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS, file=None): |
|
def proxy_callback(in_data, frame_count, time_info, status): |
|
|
|
if self.chunk is not None: |
|
in_data = self.wf.readframes(self.chunk) |
|
callback(in_data) |
|
return (None, pyaudio.paContinue) |
|
if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data) |
|
self.buffer_queue = queue.Queue() |
|
self.device = device |
|
self.input_rate = input_rate |
|
self.sample_rate = self.RATE_PROCESS |
|
self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND)) |
|
self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND)) |
|
self.pa = pyaudio.PyAudio() |
|
|
|
kwargs = { |
|
'format': self.FORMAT, |
|
'channels': self.CHANNELS, |
|
'rate': self.input_rate, |
|
'input': True, |
|
'frames_per_buffer': self.block_size_input, |
|
'stream_callback': proxy_callback, |
|
} |
|
|
|
self.chunk = None |
|
|
|
if self.device: |
|
kwargs['input_device_index'] = self.device |
|
elif file is not None: |
|
self.chunk = 320 |
|
self.wf = wave.open(file, 'rb') |
|
|
|
self.stream = self.pa.open(**kwargs) |
|
self.stream.start_stream() |
|
|
|
def resample(self, data, input_rate): |
|
""" |
|
Microphone may not support our native processing sampling rate, so |
|
resample from input_rate to RATE_PROCESS here for webrtcvad and |
|
deepspeech |
|
Args: |
|
data (binary): Input audio stream |
|
input_rate (int): Input audio rate to resample from |
|
""" |
|
data16 = np.fromstring(string=data, dtype=np.int16) |
|
resample_size = int(len(data16) / self.input_rate * self.RATE_PROCESS) |
|
resample = signal.resample(data16, resample_size) |
|
resample16 = np.array(resample, dtype=np.int16) |
|
return resample16.tostring() |
|
|
|
def read_resampled(self): |
|
"""Return a block of audio data resampled to 16000hz, blocking if necessary.""" |
|
return self.resample(data=self.buffer_queue.get(), |
|
input_rate=self.input_rate) |
|
|
|
def read(self): |
|
"""Return a block of audio data, blocking if necessary.""" |
|
return self.buffer_queue.get() |
|
|
|
def destroy(self): |
|
self.stream.stop_stream() |
|
self.stream.close() |
|
self.pa.terminate() |
|
|
|
frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate) |
|
|
|
def write_wav(self, filename, data): |
|
logging.info("write wav %s", filename) |
|
wf = wave.open(filename, 'wb') |
|
wf.setnchannels(self.CHANNELS) |
|
|
|
assert self.FORMAT == pyaudio.paInt16 |
|
wf.setsampwidth(2) |
|
wf.setframerate(self.sample_rate) |
|
wf.writeframes(data) |
|
wf.close() |
|
|
|
|
|
class VADAudio(Audio): |
|
"""Filter & segment audio with voice activity detection.""" |
|
|
|
def __init__(self, aggressiveness=3, device=None, input_rate=None, file=None): |
|
super().__init__(device=device, input_rate=input_rate, file=file) |
|
self.vad = webrtcvad.Vad(aggressiveness) |
|
|
|
def frame_generator(self): |
|
"""Generator that yields all audio frames from microphone.""" |
|
if self.input_rate == self.RATE_PROCESS: |
|
while True: |
|
yield self.read() |
|
else: |
|
while True: |
|
yield self.read_resampled() |
|
|
|
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None): |
|
"""Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None. |
|
Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered. |
|
Example: (frame, ..., frame, None, frame, ..., frame, None, ...) |
|
|---utterence---| |---utterence---| |
|
""" |
|
if frames is None: frames = self.frame_generator() |
|
num_padding_frames = padding_ms // self.frame_duration_ms |
|
ring_buffer = collections.deque(maxlen=num_padding_frames) |
|
triggered = False |
|
|
|
for frame in frames: |
|
if len(frame) < 640: |
|
return |
|
|
|
is_speech = self.vad.is_speech(frame, self.sample_rate) |
|
|
|
if not triggered: |
|
ring_buffer.append((frame, is_speech)) |
|
num_voiced = len([f for f, speech in ring_buffer if speech]) |
|
if num_voiced > ratio * ring_buffer.maxlen: |
|
triggered = True |
|
for f, s in ring_buffer: |
|
yield f |
|
ring_buffer.clear() |
|
|
|
else: |
|
yield frame |
|
ring_buffer.append((frame, is_speech)) |
|
num_unvoiced = len([f for f, speech in ring_buffer if not speech]) |
|
if num_unvoiced > ratio * ring_buffer.maxlen: |
|
triggered = False |
|
yield None |
|
ring_buffer.clear() |
|
|
|
def main(ARGS): |
|
|
|
if os.path.isdir(ARGS.model): |
|
model_dir = ARGS.model |
|
ARGS.model = os.path.join(model_dir, 'output_graph.pb') |
|
ARGS.scorer = os.path.join(model_dir, ARGS.scorer) |
|
|
|
print('Initializing model...') |
|
logging.info("ARGS.model: %s", ARGS.model) |
|
model = deepspeech.Model(ARGS.model) |
|
if ARGS.scorer: |
|
logging.info("ARGS.scorer: %s", ARGS.scorer) |
|
model.enableExternalScorer(ARGS.scorer) |
|
|
|
|
|
vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness, |
|
device=ARGS.device, |
|
input_rate=ARGS.rate, |
|
file=ARGS.file) |
|
print("Listening (ctrl-C to exit)...") |
|
frames = vad_audio.vad_collector() |
|
|
|
|
|
spinner = None |
|
if not ARGS.nospinner: |
|
spinner = Halo(spinner='line') |
|
stream_context = model.createStream() |
|
wav_data = bytearray() |
|
for frame in frames: |
|
if frame is not None: |
|
if spinner: spinner.start() |
|
logging.debug("streaming frame") |
|
stream_context.feedAudioContent(np.frombuffer(frame, np.int16)) |
|
if ARGS.savewav: wav_data.extend(frame) |
|
else: |
|
if spinner: spinner.stop() |
|
logging.debug("end utterence") |
|
if ARGS.savewav: |
|
vad_audio.write_wav(os.path.join(ARGS.savewav, datetime.now().strftime("savewav_%Y-%m-%d_%H-%M-%S_%f.wav")), wav_data) |
|
wav_data = bytearray() |
|
text = stream_context.finishStream() |
|
print("Recognized: %s" % text) |
|
stream_context = model.createStream() |
|
|
|
if __name__ == '__main__': |
|
DEFAULT_SAMPLE_RATE = 16000 |
|
|
|
import argparse |
|
parser = argparse.ArgumentParser(description="Stream from microphone to DeepSpeech using VAD") |
|
|
|
parser.add_argument('-v', '--vad_aggressiveness', type=int, default=3, |
|
help="Set aggressiveness of VAD: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3") |
|
parser.add_argument('--nospinner', action='store_true', |
|
help="Disable spinner") |
|
parser.add_argument('-w', '--savewav', |
|
help="Save .wav files of utterences to given directory") |
|
parser.add_argument('-f', '--file', |
|
help="Read from .wav file instead of microphone") |
|
|
|
parser.add_argument('-m', '--model', required=True, |
|
help="Path to the model (protocol buffer binary file, or entire directory containing all standard-named files for model)") |
|
parser.add_argument('-s', '--scorer', |
|
help="Path to the external scorer file.") |
|
parser.add_argument('-d', '--device', type=int, default=None, |
|
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().") |
|
parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE, |
|
help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.") |
|
|
|
ARGS = parser.parse_args() |
|
if ARGS.savewav: os.makedirs(ARGS.savewav, exist_ok=True) |
|
main(ARGS) |