import time, logging from datetime import datetime import threading, collections, queue, os, os.path import deepspeech import numpy as np import pyaudio import wave import webrtcvad from halo import Halo from scipy import signal logging.basicConfig(level=20) class Audio(object): """Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from.""" FORMAT = pyaudio.paInt16 # Network/VAD rate-space RATE_PROCESS = 16000 CHANNELS = 1 BLOCKS_PER_SECOND = 50 def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS, file=None): def proxy_callback(in_data, frame_count, time_info, status): #pylint: disable=unused-argument if self.chunk is not None: in_data = self.wf.readframes(self.chunk) callback(in_data) return (None, pyaudio.paContinue) if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data) self.buffer_queue = queue.Queue() self.device = device self.input_rate = input_rate self.sample_rate = self.RATE_PROCESS self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND)) self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND)) self.pa = pyaudio.PyAudio() kwargs = { 'format': self.FORMAT, 'channels': self.CHANNELS, 'rate': self.input_rate, 'input': True, 'frames_per_buffer': self.block_size_input, 'stream_callback': proxy_callback, } self.chunk = None # if not default device if self.device: kwargs['input_device_index'] = self.device elif file is not None: self.chunk = 320 self.wf = wave.open(file, 'rb') self.stream = self.pa.open(**kwargs) self.stream.start_stream() def resample(self, data, input_rate): """ Microphone may not support our native processing sampling rate, so resample from input_rate to RATE_PROCESS here for webrtcvad and deepspeech Args: data (binary): Input audio stream input_rate (int): Input audio rate to resample from """ data16 = np.fromstring(string=data, dtype=np.int16) resample_size = int(len(data16) / self.input_rate * self.RATE_PROCESS) resample = signal.resample(data16, resample_size) resample16 = np.array(resample, dtype=np.int16) return resample16.tostring() def read_resampled(self): """Return a block of audio data resampled to 16000hz, blocking if necessary.""" return self.resample(data=self.buffer_queue.get(), input_rate=self.input_rate) def read(self): """Return a block of audio data, blocking if necessary.""" return self.buffer_queue.get() def destroy(self): self.stream.stop_stream() self.stream.close() self.pa.terminate() frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate) def write_wav(self, filename, data): logging.info("write wav %s", filename) wf = wave.open(filename, 'wb') wf.setnchannels(self.CHANNELS) # wf.setsampwidth(self.pa.get_sample_size(FORMAT)) assert self.FORMAT == pyaudio.paInt16 wf.setsampwidth(2) wf.setframerate(self.sample_rate) wf.writeframes(data) wf.close() class VADAudio(Audio): """Filter & segment audio with voice activity detection.""" def __init__(self, aggressiveness=3, device=None, input_rate=None, file=None): super().__init__(device=device, input_rate=input_rate, file=file) self.vad = webrtcvad.Vad(aggressiveness) def frame_generator(self): """Generator that yields all audio frames from microphone.""" if self.input_rate == self.RATE_PROCESS: while True: yield self.read() else: while True: yield self.read_resampled() def vad_collector(self, padding_ms=300, ratio=0.75, frames=None): """Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None. Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered. Example: (frame, ..., frame, None, frame, ..., frame, None, ...) |---utterence---| |---utterence---| """ if frames is None: frames = self.frame_generator() num_padding_frames = padding_ms // self.frame_duration_ms ring_buffer = collections.deque(maxlen=num_padding_frames) triggered = False for frame in frames: if len(frame) < 640: return is_speech = self.vad.is_speech(frame, self.sample_rate) if not triggered: ring_buffer.append((frame, is_speech)) num_voiced = len([f for f, speech in ring_buffer if speech]) if num_voiced > ratio * ring_buffer.maxlen: triggered = True for f, s in ring_buffer: yield f ring_buffer.clear() else: yield frame ring_buffer.append((frame, is_speech)) num_unvoiced = len([f for f, speech in ring_buffer if not speech]) if num_unvoiced > ratio * ring_buffer.maxlen: triggered = False yield None ring_buffer.clear() def main(ARGS): # Load DeepSpeech model if os.path.isdir(ARGS.model): model_dir = ARGS.model ARGS.model = os.path.join(model_dir, 'output_graph.pb') ARGS.scorer = os.path.join(model_dir, ARGS.scorer) print('Initializing model...') logging.info("ARGS.model: %s", ARGS.model) model = deepspeech.Model(ARGS.model) if ARGS.scorer: logging.info("ARGS.scorer: %s", ARGS.scorer) model.enableExternalScorer(ARGS.scorer) # Start audio with VAD vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness, device=ARGS.device, input_rate=ARGS.rate, file=ARGS.file) print("Listening (ctrl-C to exit)...") frames = vad_audio.vad_collector() # Stream from microphone to DeepSpeech using VAD spinner = None if not ARGS.nospinner: spinner = Halo(spinner='line') stream_context = model.createStream() wav_data = bytearray() for frame in frames: if frame is not None: if spinner: spinner.start() logging.debug("streaming frame") stream_context.feedAudioContent(np.frombuffer(frame, np.int16)) if ARGS.savewav: wav_data.extend(frame) else: if spinner: spinner.stop() logging.debug("end utterence") if ARGS.savewav: vad_audio.write_wav(os.path.join(ARGS.savewav, datetime.now().strftime("savewav_%Y-%m-%d_%H-%M-%S_%f.wav")), wav_data) wav_data = bytearray() text = stream_context.finishStream() print("Recognized: %s" % text) stream_context = model.createStream() if __name__ == '__main__': DEFAULT_SAMPLE_RATE = 16000 import argparse parser = argparse.ArgumentParser(description="Stream from microphone to DeepSpeech using VAD") parser.add_argument('-v', '--vad_aggressiveness', type=int, default=3, help="Set aggressiveness of VAD: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3") parser.add_argument('--nospinner', action='store_true', help="Disable spinner") parser.add_argument('-w', '--savewav', help="Save .wav files of utterences to given directory") parser.add_argument('-f', '--file', help="Read from .wav file instead of microphone") parser.add_argument('-m', '--model', required=True, help="Path to the model (protocol buffer binary file, or entire directory containing all standard-named files for model)") parser.add_argument('-s', '--scorer', help="Path to the external scorer file.") parser.add_argument('-d', '--device', type=int, default=None, help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().") parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE, help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.") ARGS = parser.parse_args() if ARGS.savewav: os.makedirs(ARGS.savewav, exist_ok=True) main(ARGS)